spark任务卡住问题原因之一以及解决方案

本文探讨了Spark在处理大规模数据集时遇到的任务停滞问题,特别是在pyspark中保存数据时,最后几个stage长时间未完成的情况。分析指出,这是由于Spark的推断执行机制导致,该机制启动多个task并保留率先完成的结果,可能造成资源过度占用。文章建议调整推断执行条件以优化资源利用。
摘要由CSDN通过智能技术生成

文章目录


本文是一个记录文,主要是参考网上的资料
Spark任务一直停在某个Stage不动问题

背景

  • pyspark 在保存数据时,在最后4-5个stage 任务卡住不动,其他stage 10几分钟完成,这几个2h也没用完成,而且在sparkUI上面发现需要处理的数据0KB,实在是郁闷啊。网上查找资料如下,链接如上:
  • 在这里插入图片描述

分析

主要是使用了spark 的推断执行机制,

缺点
  • 开始推断执行,会启动多个task,保留率先完成的结果,因此可能导致占用资源较多。
  • 不过可以将推断执行的条件设置的严苛一点,以缓解资源占用的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值