- 博客(159)
- 收藏
- 关注
原创 【GPT模型训练】第二课:张量与秩:从数学本质到深度学习的基础概念解析
在数学和物理学中,张量是一种多维数组,用于表示物理量或几何实体在不同坐标系下的变换关系。在机器学习和深度学习中,张量是数据的基本表示形式,类似于多维数组或矩阵的扩展。张量:多维数组,用于表示数据或物理量。张量的秩:张量的维度数,即需要多少个索引来定位元素。拼音:秩(zhì)。理解张量和秩的概念是学习深度学习和线性代数的基础!
2025-06-08 22:09:31
393
原创 【GPT模型训练】第一课:安装PyTorch环境
本文记录了从零构建大模型的实践过程,重点介绍了PyTorch环境的配置步骤。主要包括:1)创建conda环境;2)查询CUDA版本;3)根据PyTorch官网建议选择合适版本,推荐安装2.5.1版本;4)解决大文件下载问题,通过本地安装torch包;5)安装配套的torchvision、torchaudio及tiktoken等依赖。最后测试时发现tiktoken版本不兼容问题,将其降级到0.7.0版本后解决。该笔记旨在帮助开发者快速搭建大模型开发环境。
2025-06-08 21:42:33
365
原创 【GPT入门】第40课 vllm与ollama特性对比,与模型部署
本文对比了vLLM与Ollama两种大模型部署方案,并提供了vLLM的详细部署指南。首先通过图表呈现二者特性差异,随后分步骤说明vLLM部署流程:1)在AutoDL平台选购GPU服务器;2)通过ModelScope下载DeepSeek-R1-Distill-Qwen-1.5B模型;3)创建Python虚拟环境并安装vLLM;4)启动模型服务。文中包含多个终端操作截图,展示模型下载、环境配置及服务启动过程,为开发者提供直观的部署参考。
2025-06-01 10:44:19
375
原创 【GPT入门】用错千问模型,账单马上飞起来
用户测试千问模型时意外产生5元费用,经咨询客服后获知查看免费模型及剩余token的方法。文章提供了两张操作界面截图,展示了如何查询可用的免费模型资源和剩余免费token额度,帮助用户避免意外扣费。建议使用前先确认模型是否收费及剩余免费额度。
2025-05-26 13:12:30
193
原创 【GPT入门】第39课 OPENAI官方API调用方法
需要科学上网,可以调用 gpt-4o-mini 的 api, 使用其它旧的GPT,反而可能需要收费,例如 gpt-3.5-turbo。OPENAI_BASE_URL,OPENAI_API_KEY 这两个变量可以配置到环境变量。
2025-05-18 23:00:13
432
原创 【GPT入门】第38课 RAG评估指标概述
本文介绍了RAG(Retrieval-Augmented Generation)评估的相关指标,重点探讨了ragas和trulens两个评估工具。ragas是一个开源工具,从文本生成和文本召回两个维度进行分析,评估的指标包括准确性和相关性。准确性主要考察生成内容与检索结果是否准确回答了问题,而相关性则衡量生成内容和检索结果与问题的匹配程度。trulens则是另一个评估工具,提供了对RAG系统的全面评估。通过这些工具,可以更好地衡量和优化RAG系统的性能,确保其生成的内容既准确又相关。
2025-05-11 12:14:54
371
原创 【第37课】一文读懂!RAG 评估中忠实性与答案相关性的本质差异
在RAG(检索增强生成)评估中,忠实性和答案相关性是两个不同但又相互关联的重要指标,它们的区别如下:
2025-05-07 15:09:43
277
原创 【GPT入门】第36课 魔塔社区全解析:平台功能一览与代码下载加载的代码实操指南
魔塔社区通常指的是ModelScope魔搭社区,是一个综合性的人工智能模型和应用平台。成立背景:2022年由阿里巴巴达摩院联合CCF开源发展委员会共同推出,旨在降低AI应用的门槛,让AI模型的使用更加便捷和普及。主要特点开源开放:首批开源模型超过300个,覆盖视觉、语音、自然语言处理、多模态等AI主要领域,并向AI for Science等新领域探索,覆盖主流任务超过60个。包含150多个SOTA模型和10多个大模型,全面开源且开放使用。中文模型特色。
2025-04-06 11:56:10
705
原创 【GPT入门】第35课 代码视角下的中文 TOKEN 剖析:从运行到输出的全面观察
想用代码方式,观察一个中文token代表中文的什么内容,下面以代码的方式实战给大家看。
2025-04-05 17:41:04
164
原创 【GPT入门】第 34 课:深度剖析 ReAct Agent 工作原理及代码实现
定义与基本概念在人工智能和自然语言处理领域,ReAct Agent(反应式智能代理)是一种独特且强大的智能代理。它基于 “推理 - 行动(Reasoning - Acting)” 的范式,将推理和行动紧密结合,以模拟人类在解决问题时的思维和行为模式。ReAct Agent 能够根据输入的问题进行逻辑推理,决定需要采取的行动,然后调用相应的工具来执行这些行动,并依据行动的结果进一步推理和调整后续行动,通过不断循环迭代来逐步解决复杂的任务。产生背景。
2025-04-05 07:05:08
1068
原创 【GPT入门】第33课 从应用场景出发,区分 TavilyAnswer 和 TavilySearchResults,代码实战
【代码】【GPT入门】第33课 从应用场景出发,区分 TavilyAnswer 和 TavilySearchResults。
2025-04-04 07:25:37
419
原创 【GPT入门】第33 课 一文吃透 LangChain:chain 结合 with_fallbacks ([]) 的实战指南
模型降级fallback,可以设置在llm上,也可以设置在chain上,都带有with_fallbacks([])函数。这个概念跟spingcloud的熔断降级思想相同。
2025-04-03 17:30:00
384
原创 【GPT入门】第32课 一文读懂:LangSmith 和 LangFuse 在 LLM 领域的异同
LangSmith和LangFuse都是在LLM开发领域中用于模型可观测性、分析、评估等方面的工具,它们有以下一些相同点和不同点:
2025-04-03 17:20:42
484
原创 【GPT入门】第31课 ollama运行私有化部署的模型与调试
https://ollama.com/ 官网下载,不断下一步安装就行,如果C盘比较少,建议变更模型安装路径。检查磁盘大小:发现,大小不变。如果模型不存在,就自动下载。
2025-04-02 21:38:42
469
原创 【GPT入门】第30课 langchain的自问自搜索回答agent不同模型对比
使用自问自搜自答agent,对比不同模型的执行效果。gpt4:很牛gpt3.5: 有的问题会失败通义千问:执行失败智谱:执行失败结论:不同模型的大脑的真的不一样
2025-04-02 16:25:42
506
原创 【GPT入门】第28课 手把手教你:用 LangChain 搭建双工具 ReACT 代理
ReACT(Thought, Action, Observation)是一种框架,核心思想是让代理能够进行思考、执行动作并根据动作结果进行观察,以此循环迭代,最终完成复杂任务。在该框架下,代理会产生一系列思考步骤,每步思考决定采取的行动,行动执行后得到相应观察结果,这些结果又影响下一步思考。–处理复杂任务:ReACT 代理能将复杂任务分解为一系列子任务,通过循环的思考 - 行动 - 观察过程逐步完成。例如,在需查询多个数据源、进行-计算和推理的任务中,代理可依次调用合适工具,最终得出结果。
2025-04-01 23:06:54
321
原创 【GPT入门】第27课 Jupyter 感知到通过命令行生成的内核
如果上述方法仍然无法让 Jupyter 感知到新的内核,可以尝试查看 Jupyter 的日志文件,以查找可能的错误信息,或者检查内核的安装路径和配置文件是否正确。
2025-03-19 14:02:25
366
原创 【GPT入门】第27课 deepSeek API调用
deepseek-reasoner 是 DeepSeek 最新推出的推理模型 DeepSeek-R1。通过指定 model=‘deepseek-reasoner’,即可调用 DeepSeek-R1。deepseek-chat 模型已全面升级为 DeepSeek-V3,接口不变。通过指定 model=‘deepseek-chat’ 即可调用 DeepSeek-V3。其实就是调用OPENAI的api,把key和base_url换为deepseek的就ok。
2025-03-18 17:21:16
432
原创 【GPT入门】第26课 掌握langchain LCEL 链式调用的三种方法
_call__语法:最常用,调用方式简洁直观,适用于单个输入的情况。invoke方法:和直接调用链对象功能类似,在某些场景下可能更具灵活性。apply方法:用于批量处理多个输入,能提高处理效率。
2025-03-18 17:14:16
468
原创 【GPT入门】第25课 掌握 LangChain:链式调用的奥秘、特性与使用示例
- **`check_duplicated`**:这通常是一个自定义的组件,也许是一个函数、一个工具或者一个特定的处理器,其作用是对输入数据开展检查重复项之类的预处理操作。- **`model`**:一般代表一个语言模型组件,像 OpenAI 的 GPT 系列模型、Hugging Face 上的预训练模型等。这个组件会接收前面组件的输出,然后生成对应的文本响应。- **`parser`**:是一个解析器组件,它的功能是对语言模型的输出进行解析和处理,把输出转换为特定的数据格式或者执行额外的后处理操作。
2025-03-18 17:12:37
478
原创 【GPT入门】第24课 langfuse介绍
Langfuse是一款专为大规模语言模型(LLM)应用开发设计的开源平台。API文档:https://api.reference.langfuse.com/开源,支持 LangChain 集成或原生 OpenAI API 集成。项目地址:https://github.com/langfuse。文档地址:https://langfuse.com/docs。官方网站:https://langfuse.com/
2025-03-16 14:44:42
669
原创 【GPT入门】第23课 langchain serve介绍
1. 简化部署流程一键部署为 API:LangChain 可用于构建复杂的自然语言处理流程,如问答系统、文本生成应用等。但要将这些应用部署为可对外提供服务的 API 通常较为繁琐。langserve 能让开发者只需少量代码,就能将 LangChain 构建的组件部署成一个完整的 API 服务。例如,开发者定义好一个由提示模板、语言模型和一些中间处理步骤组成的 LangChain 链后,使用 langserve 可以轻松将其包装成一个可通过 HTTP 请求调用的 API 端点。
2025-03-16 10:40:19
804
原创 【GPT入门】第22课 langchain LCEL介绍
LCEL即 LangChain Expression Language,是 LangChain 推出的一种声明式语言,用于简化和优化在 LangChain 框架内构建复杂链和应用的过程。特点声明式语法:传统的链式操作构建方式可能需要编写较多的代码和复杂的逻辑,而 LCEL 使用简洁的声明式语法,让开发者能够以一种直观的方式描述数据在各个组件之间的流动。例如,使用 | 操作符来连接不同的组件,就像搭积木一样轻松组合各个模块,大大提高了代码的可读性和可维护性。
2025-03-15 17:31:48
503
原创 【GPT入门】第21课 langchain核心组件
**模型 I/O 封装**LLMs:大语言模型Chat Models:一般基于 LLMs,但按对话结构重新封装PromptTemple:提示词模板OutputParser:解析输出**数据连接封装**Document Loaders:各种格式文件的加载器Document Transformers:对文档的常用操作,如:split, filter, translate, extract metadata, etcText Embedding Models:文本向量化表示,用于检索等操作
2025-03-15 13:52:05
945
原创 【GPT入门】第20课 langchain的function calling 初步体验
query = “3 加 4的和 的 5 倍是多少?” 这个会调用两次函数。query = " 4的 5 倍是多少?
2025-03-14 16:09:32
615
原创 【GPT入门】第19课 Langchain IO模型
本文讲 LangChain 的核心组件模型 I/O 封装LLMs:大语言模型Chat Models:一般基于 LLMs,但按对话结构重新封装PromptTemple:提示词模板OutputParser:解析输出template = PromptTemplate.from_template("给我讲一个关于{subject}的笑话")print(template.format(subject="猫"))
2025-03-13 21:46:55
400
原创 【GPT入门】第18课 langchain介绍与API初步体验
LangChain 提供了一套工具、组件和接口,帮助开发者更轻松地将大语言模型集成到各种应用程序中。它允许开发者组合不同的元素,如语言模型、数据存储和外部 API,以创建复杂的、上下文感知的应用程序,支持多种自然语言处理任务。
2025-03-13 18:15:32
1202
原创 【GPT入门】第16课 RAG入门
在人工智能领域,RAG是一个重要的技术方向,为解决生成式模型的一些局限性提供了新的思路和方法,具有广阔的应用前景和研究价值。类比:你可以把这个过程想象成开卷考试。让 LLM 先翻书,再回答问题。文档加载,并按一定条件切割成片段。将切割的文本片段灌入检索引擎。
2025-03-13 11:45:30
633
原创 【GPT入门】第15课 用 prompt生成sql交互页面,创建可视化自然语言转sql生成器
任务描述:用promt开发一个UI,填写用户的表结构与查询需求,生成可执行sql。
2025-03-12 11:21:48
301
原创 【GPT入门】第14课 openai调用高德地图案例实现多轮会话与多轮接口调用
任务描述:使用openai调用高德地图API,实现用户问地理有关的信息时,调用高德API,并返回相关信息例如:问:我想在广州珠江新城附近喝咖啡,给我推荐几个星巴克- 经典的咖啡连锁店,提供多种咖啡和轻食。咖啡陪你- 适合休闲放松的咖啡店,环境舒适。- 以其独特的韩式风格和美味的咖啡而闻名。你可以根据自己的喜好选择去哪个咖啡店!了解高德地图API定义OPENAI接口, 目的是准备好高德地图API需要的参数程序调用高德地图API调用结果使用多轮对话的方式实现。
2025-03-09 23:29:15
656
原创 【GPT入门】第12课 FunctionCall 生成数据库sql代码
如下代码的任务:自然语言问ai,自动生成sql并回答用户实现思路:步骤1. ai会把用户的问题,转为sql步骤2. 程序执行sql步骤3.把执行的sql结果,重新给回ai,步骤4. ai给的回复再次放到prompt中 ,并给ai。
2025-03-09 12:58:25
440
原创 【GPT入门】第11课 FunctionCall调用本地代码入门
为了了解,funcationCall底层,手写一个functionCall多方法,并调用,体验。2.让大模型自动识别用户问题,解释参数,获取调用方法id、方法名称、方法参数。3.把第二步的结果,给大模型,让大模型调用函数,并返回结果。任务:让openai调用sum方法,对加法进行求和。1.定义sum方法,给openAi接口。
2025-03-09 07:27:16
458
原创 【GPT入门】第10课 FunctionCalling介绍
通过 Actions 的 schema,GPT 能读懂各个 API 能做什么、怎么调用(相当于人读 API 文档)拿到 prompt,GPT 分析出是否要调用 API 才能解决问题(相当于人读需求)如果要调用 API,生成调用参数(相当于人编写调用代码)ChatGPT(注意,不是 GPT)调用 API(相当于人运行程序)API 返回结果,GPT 读懂结果,整合到回答中(相当于人整理结果,输出结论)把 AI 当人看!
2025-03-09 07:07:58
502
原创 【GPT入门】第9课 思维树概念与原理
思维树(Tree of Thought,ToT )是一种大模型推理框架,旨在解决更加复杂的多步骤推理任务,让大模型能够探索多种可能的解决方案路径 ,并选出最优解。
2025-03-08 20:10:56
585
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人