R入门小练习

R语言实战上的题,做出来好费劲,,,会的太少了
一组学生参加了数学、科学和英语考试。为了给所有的学生确定一个单一的成绩衡量指标,需要将这些科目的成绩组合起来。另外,还想将前20%的学生评定为A,接下来20%的学生评定为B,以此类推。最后,希望按字母顺序对学生排序。

1、数据录入

>StuId <- c(1:10)
>StuName <- c('John Davis','Angela Williams','Bull >Jones','Cheryl Cushing','Reuven Ytzrhak','Joel Knox','Mary Rayburn','Greg England','Brad Tmac','Tracy Mcgrady')
>Math <- c(502,465,621,575,454,634,576,421,599,666)
>Science <- c(95,67,78,66,96,89,78,56,68,10)
>English <- c(25,12,22,18,15,30,37,12,22,38)
>mydata <- data.frame(StuId,StuName,Math,Science,English)
>mydata
    Stuld         StuName Math Science English
1      1      John Davis  502      95      25
2      2 Angela Williams  465      67      12
3      3      Bull Jones  621      78      22
4      4  Cheryl Cushing  575      66      18
5      5  Reuven Ytzrhak  454      96      15
6      6       Joel Knox  634      89      30
7      7    Mary Rayburn  576      78      37
8      8    Greg England  421      56      12
9      9       Brad Tmac  599      68      22
10    10   Tracy Mcgrady  666      10      38

2、数据预处理-数据中心化、标准化
scale(data,center=T,scale=T)
center=T 数据中心化
scale=T 数据标准化
数据的中心化:指数据集中的各项数据减去数据集的均值
数据的标准化:值中心化后的数据在除以数据集的标准差
数据中心化和标准化的意义是一样的,为了消除量纲对数据结构的影响

>z <- scale(mydata[3:5])
>z
            Math     Science    English
 [1,] -0.5817963  0.98895866  0.2006619
 [2,] -1.0184385 -0.13212808 -1.1722882
 [3,]  0.8225395  0.30829885 -0.1161727
 [4,]  0.2796870 -0.17216689 -0.5386189
 [5,] -1.1482510  1.02899747 -0.8554535
 [6,]  0.9759544  0.74872578  0.7287197
 [7,]  0.2914882  0.30829885  1.4680005
 [8,] -1.5376887 -0.57255501 -1.1722882
 [9,]  0.5629144 -0.09208927 -0.1161727
[10,]  1.3535909 -2.41434036  1.5736120
attr(,"scaled:center")
   Math Science English 
  551.3    70.3    23.1 
attr(,"scaled:scale")
     Math   Science   English 
84.737569 24.975766  9.468662 

3、计算每个学生成绩的均值
apply(X,MARGIN,FUN,…)
X:阵列包括矩阵
MARGIN:1表示矩阵行,2表示矩阵列,也可以是c(1,2)
FUN:表示具体的运算方式

>mydata$score <- apply(z,1,mean)
>mydata
   Stuld         StuName Math Science English      score
1      1      John Davis  502      95      25  0.2026081
2      2 Angela Williams  465      67      12 -0.7742849
3      3      Bull Jones  621      78      22  0.3382219
4      4  Cheryl Cushing  575      66      18 -0.1436996
5      5  Reuven Ytzrhak  454      96      15 -0.3249024
6      6       Joel Knox  634      89      30  0.8177999
7      7    Mary Rayburn  576      78      37  0.6892625
8      8    Greg England  421      56      12 -1.0941773
9      9       Brad Tmac  599      68      22  0.1182175
10    10   Tracy Mcgrady  666      10      38  0.1709542

4、算出四分位数
quantile(x,probs) 求分位数。
x:待求分位数的数值型向量,
pobs:一个由[0,1]之间的概率值组成的数值向量

>q<-quantile(mydata$score,c(.8,.6,.4,.2)) 
>q
        80%         60%         40%         20% 
 0.40843002  0.18361575  0.01345066 -0.41477887 

5、根据四分位数给出分数等级

>mydata$level[score>=q[1]] <- "A"
>mydata$level[score>=q[2] & score<q[1]] <- "B"
>mydata$level[score>=q[3] & score<q[2]] <- "C"
>mydata$level[score>=q[4] & score<q[3]] <- "D"
>mydata$level[score<q[4]] <- "E"

6、拆分StuName列为FirName和LasName两列
拆分这里有两个方法,方法一是我用的笨方法;方法二使用sapply()函数
strsplit(x,split=”“)
x 是向量
split是以什么分隔
方法一

>name<-strsplit(mydata$StuName,split=" ")--这句语句错误 x应为向量
--Error in strsplit(mydata$StuName, split = " ") : non-character argument
>name<-strsplit(StuName,split=" ")--以空格分隔,
>name --把strsplit()应用到一个字符串组成的向量上会返回一个列表
[[1]]
[1] "John"  "Davis"

[[2]]
[1] "Angela"   "Williams"

[[3]]
[1] "Bull"  "Jones"

[[4]]
[1] "Cheryl"  "Cushing"
...
>name<-unlist(strsplit(StuName,split=" "))--将list形式转化成向量格式
> name
 [1] "John"     "Davis"    "Angela"   "Williams" "Bull"     "Jones"    "Cheryl"   "Cushing"  "Reuven"  
[10] "Ytzrhak"  "Joel"     "Knox"     "Mary"     "Rayburn"  "Greg"     "England"  "Brad"     "Tmac"    
[19] "Tracy"    "Mcgrady" 
>name<-matrix(name,ncol=2,byrow=T)
>name
      [,1]     [,2]      
 [1,] "John"   "Davis"   
 [2,] "Angela" "Williams"
 [3,] "Bull"   "Jones"   
 [4,] "Cheryl" "Cushing" 
 [5,] "Reuven" "Ytzrhak" 
 [6,] "Joel"   "Knox"    
 [7,] "Mary"   "Rayburn" 
 [8,] "Greg"   "England" 
 [9,] "Brad"   "Tmac"    
[10,] "Tracy"  "Mcgrady"
>mydata<-cbind(mydata,FirName,LasName)
>FirName<-name[,1]
>LasName<-name[,2]

方法二:
sapply() 提取列表中每个成分的第一个元素,
“[”是一个可以提取某个对象一部分的函数

>name<-strsplit((StuName)," ")
>lastname<-sapply(name,"[",2)
>lastname
 [1] "Davis"    "Williams" "Jones"    "Cushing"  "Ytzrhak"  "Knox"     "Rayburn"  "England"  "Tmac"    
[10] "Mcgrady" 
>firstname<-sapply(name,"[",1)
>firstname
 [1] "John"   "Angela" "Bull"   "Cheryl" "Reuven" "Joel"   "Mary"   "Greg"   "Brad"   "Tracy" 

7、合并&排序

>mydata<-cbind(mydata,FirName,LasName)
>mydata
   Stuld Math Science English      score FirName  LasName level
4      4  575      66      18 -0.1436996  Cheryl  Cushing     D
1      1  502      95      25  0.2026081    John    Davis     B
8      8  421      56      12 -1.0941773    Greg  England     E
3      3  621      78      22  0.3382219    Bull    Jones     B
6      6  634      89      30  0.8177999    Joel     Knox     A
10    10  666      10      38  0.1709542   Tracy  Mcgrady     c
7      7  576      78      37  0.6892625    Mary  Rayburn     A
9      9  599      68      22  0.1182175    Brad     Tmac     c
2      2  465      67      12 -0.7742849  Angela Williams     E
5      5  454      96      15 -0.3249024  Reuven  Ytzrhak     D
> options(digits=2)--保留小数点后两位
> mydata<-mydata[order(mydata$LasName,mydata$FirName),]--排序
> mydata
   Stuld Math Science English score FirName  LasName level
4      4  575      66      18 -0.14  Cheryl  Cushing     D
1      1  502      95      25  0.20    John    Davis     B
8      8  421      56      12 -1.09    Greg  England     E
3      3  621      78      22  0.34    Bull    Jones     B
6      6  634      89      30  0.82    Joel     Knox     A
10    10  666      10      38  0.17   Tracy  Mcgrady     c
7      7  576      78      37  0.69    Mary  Rayburn     A
9      9  599      68      22  0.12    Brad     Tmac     c
2      2  465      67      12 -0.77  Angela Williams     E
5      5  454      96      15 -0.32  Reuven  Ytzrhak     D
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值