基于ollama运行27b gemma3解决ffmpeg命令生成问题

google开源的LLM模型gemma3,提供了1B、4B、12B、27B多个版本,特别是27B版本,被认为除Deepseek R1外最好的开源模型。

这里尝试运行ollama 27B,并解决ffmpeg命令生成问题。

1 gemma3下载

1.1 ollama环境

ollama下载gemma3的27b模型,为简化操作,这里采用docker版本的ollama。

假设docker已经安装,linux安装docker参考

https://blog.csdn.net/liliang199/article/details/150067330

 参考 https://hub.docker.com/r/ollama/ollama,docker启动ollama

docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

bash进入ollama docker容器,提供在容器中操作ollama的bash界面

docker exec -it ollama bash

1.2 gemma3下载

以下是ollama下载指令

ollama pull gemma3:27b

ollama run gemma3:27b-it-qat

中断再重新开始下载时,可能遇到"net/http: TLS handshake timeout"问题,解决方案参考附录。

https://ollama.com/library/gemma3

2 gemma3测试

2.1 prompt

这里尝试让gemma3生成ffmpeg转化视频格式的命令,即给定目标视频编码参数情况下,让gemma3生成ffmpeg视频转化命令。

prompt示例如下

ffmpeg转化为如下质量的视频命令
... ---
...   Stream #0:0[0x1](und): Video: h264 (High) (avc1 / 0x31637661), yuv420p(tv, bt709, progressive), 1920x1080 [SAR 1:1 DAR 16:9], 463 kb/s, 25 fps, 25 tbr, 90k tbn (default)

2.2 gemma3测试

为简化分析,这个采用ollama run的方式运行gemma3:27b,命令如下

ollama run gemma3:27b

ollama模型启动后,输入上述prompt,输出示例如下。

可见,gemma3:27b生成了ffmpeg命令,而且该ffmpeg命令可以正确运行。

Okay, let's break down that stream information and build an FFmpeg command to achieve similar quality.  Here's the command, followed by an explanation:

```bash
ffmpeg -i input.mp4 -c:v libx264 -profile:v high -level 4.0 -crf 23 -preset medium -c:a aac -b:a 128k -r 25 output.mp4
```

**Explanation of the Command & Options:**

*   **`ffmpeg -i input.mp4`**:  This specifies the input video file.  Replace `input.mp4` with the actual name of your video file.

*   **`-c:v libx264`**:  This sets the video codec to `libx264`, which is a very popular and efficient H.264 encoder.

*   **`-profile:v high`**: This sets the H.264 profile to "high." The provided stream data indicates a High profile.  This is crucial for compatibility with many devices
and players.

*   **`-level 4.0`**: This sets the H.264 level to 4.0.  This defines the maximum bitrate, resolution, and other parameters. Level 4.0 is appropriate for 1080p video.

*   **`-crf 23`**:  This is the Constant Rate Factor (CRF) setting.  It's a quality-based VBR (Variable Bitrate) encoding method.  Lower values mean higher quality (and
larger file sizes). 23 is a good starting point. You can experiment with values between 18-28.  A good range:
    *   18

2.3 deepseek测试

以下是deepseek使用相同的prompt生成的ffmpeg命令。

可见gemma3:27b生成的ffmpeg命令,已经很接近deepseek生成的效果了。

根据您提供的视频流信息,这里有几个FFmpeg命令可以实现类似的视频质量:

## 基本命令(保持相同参数)

```bash
# 保持相同编码参数
ffmpeg -i input.mp4 -c:v libx264 -profile:v high -pix_fmt yuv420p -s 1920x1080 -r 25 -b:v 463k output.mp4
```

## 推荐命令(优化版本)

```bash
# 使用CRF控制质量,更推荐的方式
ffmpeg -i input.mp4 -c:v libx264 -profile:v high -pix_fmt yuv420p -vf "scale=1920:1080" -r 25 -crf 23 -preset medium output.mp4
```

## 详细参数说明

```bash
ffmpeg -i input.mp4 \
  -c:v libx264 \          # 视频编码器
  -profile:v high \       # H.264档次
  -pix_fmt yuv420p \      # 像素格式
  -s 1920x1080 \          # 分辨率
  -r 25 \                 # 帧率
  -b:v 463k \             # 视频码率
  -preset medium \        # 编码速度与压缩率平衡
  -movflags +faststart \  # 优化网络播放
  output.mp4
```

## 其他选项

```bash
# 如果需要保持原始比例并添加黑边
ffmpeg -i input.mp4 -c:v libx264 -profile:v high -pix_fmt yuv420p -vf "scale=1920:1080:force_original_aspect_ratio=decrease:flags=lanczos,pad=1920:1080:(ow-iw)/2:(oh-ih)/2" -r 25 -crf 23 output.mp4

# 如果需要处理音频
ffmpeg -i input.mp4 -c:v libx264 -profile:v high -pix_fmt yuv420p -s 1920x1080 -r 25 -b:v 463k -c:a aac -b:a 128k output.mp4
```

## 参数说明:
- `-crf 23`: 恒定质量模式(18-28之间,值越小质量越高)
- `-preset`: 编码速度预设(ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow)
- `-movflags +faststart`: 将元数据移到文件开头,便于网络流媒体播放

推荐使用CRF方式,因为它能根据内容复杂度自动调整码率,在保持质量的同时获得更好的压缩效果。

附件

ollama pull 中断再重新开始下载时,可能多次遇到如下报错

net/http: TLS handshake timeout

可能之前启动的ollama pull gemma3:27b还在运行,检测到重复握手请求,抛弃当前pull TLS handshake导致

方案:

ps aux | grep ollama,找到对应的ollama pull进程kill掉。

需要注意区分ollama serve,这是ollama服务进程。

reference

---

ollama gemma3

https://ollama.com/library/gemma3

 Gemma 3 27B

https://deepranking.ai/llm-models/gemma-3-27b

mac基于mlx运行轻量级模型gemma-3-270m

https://blog.csdn.net/liliang199/article/details/152228535

Gemma-3N 模型与 Ollama 平台的集成和使用是一个非常实用的主题,尤其对于希望在本地环境中部署高性能语言模型的开发者和研究人员。以下是关于 Gemma-3N 模型如何与 Ollama 集成以及其使用方法的详细说明。 ### 本地部署Gemmi-3N模型 Ollama 是一个用于在本地运行大型语言模型的工具,支持多种模型,包括 Google DeepMind 开发的 Gemma 系列模型。通过 Ollama,用户可以在没有网络连接的情况下运行这些模型,并且可以充分利用本地硬件资源[^2]。 要安装 Ollama 并下载 Gemma 3 模型,可以按照以下步骤进行: 1. **安装 Ollama** 可以通过以下命令安装 Ollama: ```bash curl -fsSL https://ollama.ai/install.sh | sh ``` 2. **拉取 Gemma 3 模型** 安装完成后,可以通过以下命令下载 Gemma 3 模型(例如 27B 版本): ```bash ollama pull gemma3:27b ``` 一旦模型被成功下载并加载到 Ollama 中,就可以开始使用它来执行各种自然语言处理任务。 ### 运行 Gemma-3N 模型 运行 Gemma-3N 模型非常简单,只需使用 `ollama run` 命令后跟模型名称和提示语即可。例如,如果想要询问荷兰的首都是哪里,可以使用以下命令: ```bash ollama run gemma3:12b "What is the capital of the Netherlands?" ``` 这个命令会调用 Gemma 3 12B 模型,并返回对问题的回答。由于 Gemma-3N 模型是基于与 Gemini 模型相同的研究和技术构建的轻量级、最先进的开源模型,因此它们在问答、摘要和推理等任务中表现出色[^4]。 ### 应用场景 Gemma-3N 模型具有广泛的应用潜力,特别是在内容创作与通信领域,如文本生成、聊天机器人、文本摘要、图像数据提取和音频数据提取等[^3]。此外,在研究与教育领域,Gemma-3N 模型也可以用于自然语言处理和生成模型的研究、语言学习工具的开发以及知识探索等[^3]。 例如,结合 LangChain 框架,可以使用 Ollama 部署的 Gemma-3-27B 大模型来分析 PDF 文档,从而实现文档内容的理解和摘要生成。这种组合不仅可以提高工作效率,还可以帮助用户从大量文档中提取有价值的信息。 ### 总结 通过 Ollama 平台,用户可以轻松地在本地环境中部署和运行 Gemma-3N 模型。无论是用于内容创作、研究还是教育,Gemma-3N 模型都提供了强大的功能和支持。此外,由于其轻量级的设计,Gemma-3N 模型非常适合在资源有限的设备上运行,为用户提供了一个高效且灵活的选择。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值