Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
动态数组dp[word1.length+1][word2.length+1]
dp[i][j]表示从word1前i个字符转换到word2前j个字符最少的步骤数。
假设word1现在遍历到字符x,word2遍历到字符y(word1当前遍历到的长度为i,word2为j)。
以下两种可能性:
1. x==y,那么不用做任何编辑操作,所以dp[i][j] = dp[i-1][j-1]
2. x != y
(1) 在word1插入y, 那么dp[i][j] = dp[i][j-1] + 1
(2) 在word1删除x, 那么dp[i][j] = dp[i-1][j] + 1
(3) 把word1中的x用y来替换,那么dp[i][j] = dp[i-1][j-1] + 1
最少的步骤就是取这三个中的最小值。
最后返回 dp[word1.length+1][word2.length+1] 即可。
public class Solution {
public int minDistance(String word1, String word2) {
int[][] dp = new int[word1.length()+1][word2.length()+1];
dp[0][0] = 0;
for(int i=0; i<=word1.length(); i++){
dp[i][0] = i;
}
for(int i=0; i<=word2.length(); i++){
dp[0][i] = i;
}
for(int i=0; i<word1.length(); i++){
for(int j=0; j<word2.length();j++){
if(word1.charAt(i) == word2.charAt(j)){
dp[i+1][j+1] = dp[i][j];
}else{
dp[i+1][j+1] = Math.min(Math.min(dp[i][j+1]+1, dp[i+1][j]+1), dp[i][j]+1);
}
}
}
return dp[word1.length()][word2.length()];
}
}