123.买卖股票的最佳时机III
123. 买卖股票的最佳时机 III - 力扣(LeetCode)
动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III_哔哩哔哩_bilibili
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:prices = [3,3,5,0,0,3,1,4]
输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入:prices = [7,6,4,3,1]
输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。
示例 4:
输入:prices = [1] 输出:0
提示:
- 1 <= prices.length <= 10^5
- 0 <= prices[i] <= 10^5
动规五部曲:
1、确定dp数组以及下标的含义:
一天至多就五个状态:0.没有操作;1.第一次持有股票;2.第一次不持有股票;3.第二次持有股票;4.第二次不持有股票。
dp[i][0] 中表示第i天,j表示[0-4]五个状态。dp[i][j]表示第i天状态j所剩最大现金。
2、确定递推公式:
dp[i][1] 第一次持有股票 有两种具体的操作:
①、第i天买入股票了,那么[i][1] = dp[i-1][0] - prices[i];
②、第i天没有操作,而是沿用第i-1天的状态,即dp[i][1] = dp[i - 1][1];
两者比较选大的:dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
dp[i][2] 第一次不持有股票 有两种操作:
①、第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i];
②、第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2];
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
3、dp数组如何初始化:
第0天没有买入,即dp[0][0]=0;
第0天第一次买入,即dp[0][1] = -price[0];
第0天第一次卖出,即dp[0][2] = 0;
第0天第二次买入,即dp[0][3] = -price[0];
第0天第二次卖出,即dp[0][4] = 0;
4、确定遍历顺序:从前向后遍历;
5、举例推导dp数组:
综合代码:
// 版本一
class Solution {
// 定义一个方法,接受一个整数数组 prices 作为参数,返回一个整数
public int maxProfit(int[] prices) {
// 获取价格数组的长度
int len = prices.length;
// 边界判断,如果价格数组为空,则直接返回 0
if (prices.length == 0) return 0;
/*
* 定义 5 种状态:
* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出
*/
// 创建一个二维数组 dp,用于存储状态值,数组大小为 [价格数组长度][5]。
int[][] dp = new int[len][5];
// 初始化第一个状态,表示第一次买入的状态为当前价格的相反数
dp[0][1] = -prices[0];
// 初始化第二次买入的状态,确保最后结果是最多两次买卖的最大利润,也设为当前价格的相反数
dp[0][3] = -prices[0];
// 循环遍历价格数组,从第二个价格开始
for (int i = 1; i < len; i++) {
// 计算当前状态下买入的最大收益,取上一状态买入和当前价格相反数中的最大值
dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
// 计算当前状态下卖出的最大收益,取上一状态卖出和上一状态买入后加上当前价格的最大值
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
// 计算当前状态下第二次买入的最大收益,取上一状态第二次买入和上一状态卖出后减去当前价格的最大值
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
// 计算当前状态下第二次卖出的最大收益,取上一状态第二次卖出和上一状态第二次买入后加上当前价格的最大值
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
// 返回最后一个状态(最大收益)的值
return dp[len - 1][4];
}
}
188.买卖股票的最佳时机IV
188. 买卖股票的最佳时机 IV - 力扣(LeetCode)
动态规划来决定最佳时机,至多可以买卖K次!| LeetCode:188.买卖股票最佳时机4_哔哩哔哩_bilibili
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:k = 2, prices = [2,4,1]
输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。
示例 2:
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
提示:
- 0 <= k <= 100
- 0 <= prices.length <= 1000
- 0 <= prices[i] <= 1000
上一题是至多买卖两次,这一题是至多买卖k次。动规五部曲:
1、确定dp数组以及下标的含义:dp[i][j] : 第i天的状态为j,所剩下的最大现金为dp[i][j]。
j的状态表示为:
- 0 表示不操作
- 1 第一次买入
- 2 第一次卖出
- 3 第二次买入
- 4 第二次卖出
- .....
除了0之外,偶数卖出,奇数买入。至多有k笔交易,那么j的范围就是2k+1;
2、确定递推公式:
for (int i = 1; i < len; i++) {
for (int j = 0; j < k*2 - 1; j += 2) {
dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
3、dp数组如何初始化: dp[0][i] = -prices[0];
4、确定递推公式:从前向后遍历;
5、举例推导dp数组:
综合代码:
// 版本二: 二维 dp数组
class Solution {
public int maxProfit(int k, int[] prices) {
if (prices.length == 0) return 0;
// [天数][股票状态]
// 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作
int len = prices.length;
int[][] dp = new int[len][k*2 + 1];
// dp数组的初始化, 与版本一同理
for (int i = 1; i < k*2; i += 2) {
dp[0][i] = -prices[0];
}
for (int i = 1; i < len; i++) {
for (int j = 0; j < k*2 - 1; j += 2) {
dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
return dp[len - 1][k*2];
}
}