代码随想录第52天|300.最长递增子序列 718. 最长重复子数组

300.最长递增子序列 

300. 最长递增子序列 - 力扣(LeetCode)

代码随想录 (programmercarl.com)

动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列_哔哩哔哩_bilibili

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

  • 输入:nums = [10,9,2,5,3,7,101,18]
  • 输出:4
  • 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

  • 输入:nums = [0,1,0,3,2,3]
  • 输出:4

示例 3:

  • 输入:nums = [7,7,7,7,7,7,7]
  • 输出:1

提示:

  • 1 <= nums.length <= 2500
  • -10^4 <= nums[i] <= 104

动规五部曲:

1、dp[i] 的定义:dp[i] 表示i之前包括i的以nums[i]结尾的最长递增子序列的长度;

2、状态转移方程:if(nums[i] > nums[j])  dp[i] = max(dp[i], dp[j] + 1)

3、dp数组如何初始化:dp[i] 至少包括nums[i],初始化为1;

4、确定遍历顺序:从前向后遍历;

5、举例推导dp数组:以[0,1,0,3,2]为例:

综合代码:

class Solution {
    public int lengthOfLIS(int[] nums) { // 定义一个名为 Solution 的类,其中有一个名为 lengthOfLIS 的公共方法,接受一个整数数组 nums 作为参数,返回一个整数
        int[] dp = new int[nums.length]; // 创建一个长度与 nums 相同的整数数组 dp,用于记录以每个位置 i 结尾的最长上升子序列的长度
        int res = 1; // 初始化结果变量为 1,因为最短的上升子序列长度至少为 1
        Arrays.fill(dp, 1); // 将 dp 数组初始化为 1,表示每个位置上的元素都可以作为一个长度为 1 的子序列
        for (int i = 1; i < dp.length; i++) { // 遍历数组 dp,从第二个位置开始
            for (int j = 0; j < i; j++) { // 在当前位置 i 之前的位置 j 进行遍历
                if (nums[i] > nums[j]) { // 如果当前位置的元素 nums[i] 大于位置 j 的元素 nums[j],说明可以将位置 i 加入到位置 j 的子序列中,形成一个更长的子序列
                    dp[i] = Math.max(dp[i], dp[j] + 1); // 更新以位置 i 结尾的最长上升子序列的长度,取当前长度 dp[i] 与位置 j 的子序列长度加 1 中的较大值
                }
                res = Math.max(res, dp[i]); // 更新整体结果,取当前结果 res 与以位置 i 结尾的最长上升子序列长度 dp[i] 中的较大值
            }
        }
        return res; // 返回最终结果
    }
}

718. 最长重复子数组 

718. 最长重复子数组 - 力扣(LeetCode)

代码随想录 (programmercarl.com)

动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组_哔哩哔哩_bilibili

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。

示例:

输入:

  • A: [1,2,3,2,1]
  • B: [3,2,1,4,7]
  • 输出:3
  • 解释:长度最长的公共子数组是 [3, 2, 1] 。

提示:

  • 1 <= len(A), len(B) <= 1000
  • 0 <= A[i], B[i] < 100

动规五部曲:
1、确定dp数组以及下标的含义:dp[i][j]:以下标i-1结尾的A,和以下标j-1为结尾的B,最长重复子数组为dp[i][j]。该公式表明我们在遍历dp[i][j]的时候,i和j都要从1开始。

2、确定递推公式:当A[i-1]=B[i-1], dp[i][j] = dp[i-1][j-1] + 1;

3、dp数组如何初始化:根据dp[i][j] 的定义,dp[i][0] 和dp[0][j] 都是没有意义的,但是为了方便为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;将dp[i][0] 和dp[0][j] 初始化为0。

4、确定遍历顺序:外层for循环遍历A,内层for循环遍历B,在遍历的时候顺便把dp[i][j]的最大值记录下来。

5、举例推导dp数组:拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例:

综合代码:

// 版本一
class Solution {
    // 定义一个方法,参数是两个整数数组,目的是找到这两个数组中相同的元素序列的最大长度
    public int findLength(int[] nums1, int[] nums2) {
        // 初始化结果为0
        int result = 0;
        // 创建一个二维数组 dp 用于存储子问题的解,其大小为 nums1.length + 1 行,nums2.length + 1 列
        int[][] dp = new int[nums1.length + 1][nums2.length + 1];
        
        // 遍历 nums1 数组
        for (int i = 1; i < nums1.length + 1; i++) {
            // 遍历 nums2 数组
            for (int j = 1; j < nums2.length + 1; j++) {
                // 如果 nums1[i - 1] 与 nums2[j - 1] 相等
                if (nums1[i - 1] == nums2[j - 1]) {
                    // 则更新 dp[i][j] 为 dp[i - 1][j - 1] + 1
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                    // 更新结果为当前结果和 dp[i][j] 中的较大值
                    result = Math.max(result, dp[i][j]);
                }
            }
        }
        
        // 返回最终结果
        return result;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值