利用Python实现可视化交互界面:Dash

使用Python的Dash框架,无需JavaScript,实现数据可视化、表格和回调功能,适合快速构建数据驱动的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dash是一个低代码数据框架,用Python实现可视化交互界面,不用写Javascript,开源,支持回调、HTML组件等功能。

安装

pip install dash

使用

# Import packages
from dash import Dash, html, dash_table, dcc, callback, Output, Input
import pandas as pd
import plotly.express as px
import dash_mantine_components as dmc

# Incorporate data
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder2007.csv')

# Initialize the app - incorporate a Dash Mantine theme
external_stylesheets = [dmc.theme.DEFAULT_COLORS]
app = Dash(__name__, external_stylesheets=external_stylesheets)

# App layout
app.layout = dmc.Container([
    dmc.Title('My First App with Data, Graph, and Controls', color="blue", size="h3"),
    dmc.RadioGroup(
            [dmc.Radio(i, value=i) for i in  ['pop', 'lifeExp', 'gdpPercap']],
            id='my-dmc-radio-item',
            value='lifeExp',
            size="sm"
        ),
    dmc.Grid([
        dmc.Col([
            dash_table.DataTable(data=df.to_dict('records'), page_size=12, style_table={'overflowX': 'auto'})
        ], span=6),
        dmc.Col([
            dcc.Graph(figure={}, id='graph-placeholder')
        ], span=6),
    ]),

], fluid=True)

# Add controls to build the interaction
@callback(
    Output(component_id='graph-placeholder', component_property='figure'),
    Input(component_id='my-dmc-radio-item', component_property='value')
)
def update_graph(col_chosen):
    fig = px.histogram(df, x='continent', y=col_chosen, histfunc='avg')
    return fig

# Run the App
if __name__ == '__main__':
    app.run(debug=True)

1

参考

https://dash.plotly.com/tutorial

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小龙在山东

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值