【数学精讲】π

本文介绍了圆的周长和面积的计算公式,通过切分圆为扇形并累加面积的方式,以及阐述了利用微积分和莱布尼茨级数、马青公式计算π的方法,解答了关于圆的基础概念和π的求解问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        \pi是用来干什么的呢?有什么用?想必没到六年级的孩子大多都会有这个疑问。现在我给你们讲解一下吧;

       \pi是指在同一圆中周长和直径的比值。所以C:d=\pi :1,或者说\frac{C}{d}=\frac{\pi }{1}

        根据C和d的关系,我们可以知道圆周长的计算公式是:C=\pi dC=2\pi r

        这时候会有同学有疑问了:圆的面积怎么求呢?

        别急,我来给你讲一下吧。

        

        上图是圆面积推导过程,如图,将一个圆平均分为16份,将这十六份如上所示摆成一个近似的长方形,由于长方形的面积公式是S=aba=\frac{C}{2}=\frac{2\pi r}{2}=\pi r,b=\pi,所以圆面积计算公式是:S=\pi r^{2}

        这时候有同学会问了:那拼成的近似长方形的长是凹凸不平的,怎么能计算面积呢?

        其实想一想,将圆平均分为\infty份之后,每一份是不是变成了一条线呢。将每条线排列好后,圆就可以变成长方形了。

        其实圆的面积公式还有别的推导方法,如:微积分  .三角函数......

        这里就列举微积分的解法:

                【扇形面积累加】:

如上图,假定圆的半径为R,设θ 为[0, 2π]之间的角度(弧度制)。那么整个圆可以看成由无数个始边角度为θ,终边角度为θ+dθ扇形所组成,而圆的面积也就是这无数个扇形面积的累加。由于扇形的夹角(dθ)极其微小,其所对应的弧近乎直线,因而可将其看成极其尖细的等腰三角形——其底边=弧长,高=半径。根据弧度的定义 

 ,可知dθ所对应的弧长就等于 dθ·R,三角形的面积就= 

,而圆的面积也就是

        接下来,我来讲解一下如何求出\pi

       

求π的公式有很多种,其中最著名的是莱布尼茨级数和马青公式。以下是这两个公式的介绍:

  1. 莱布尼茨级数: 莱布尼茨级数是一种用于计算π的无穷级数。它的公式如下:\frac{\pi }{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots这个级数是一个交替级数,通过不断增加级数的项,可以逐渐逼近π/4的值。当级数的项数越多时,逼近的精度也会越高。

  2. 马青公式: 马青公式是一种用于计算π的无穷乘积公式。它的公式如下:\frac{\pi }{2}=\frac{2}{1}\ast \frac{2}{3}\ast\frac{2}{5}\ast\cdots 这个公式中的每一项都是两个连续的整数相除,通过不断增加乘积的项,可以逐渐逼近π/2的值。同样地,当乘积的项数越多时,逼近的精度也会越高。            谢谢观看 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值