是用来干什么的呢?有什么用?想必没到六年级的孩子大多都会有这个疑问。现在我给你们讲解一下吧;
是指在同一圆中周长和直径的比值。所以
,或者说
根据C和d的关系,我们可以知道圆周长的计算公式是:或
这时候会有同学有疑问了:圆的面积怎么求呢?
别急,我来给你讲一下吧。
上图是圆面积推导过程,如图,将一个圆平均分为16份,将这十六份如上所示摆成一个近似的长方形,由于长方形的面积公式是而
,
,所以圆面积计算公式是:
。
这时候有同学会问了:那拼成的近似长方形的长是凹凸不平的,怎么能计算面积呢?
其实想一想,将圆平均分为份之后,每一份是不是变成了一条线呢。将每条线排列好后,圆就可以变成长方形了。
其实圆的面积公式还有别的推导方法,如:微积分 .三角函数......
这里就列举微积分的解法:
【扇形面积累加】:
如上图,假定圆的半径为R,设θ 为[0, 2π]之间的角度(弧度制)。那么整个圆可以看成由无数个始边角度为θ,终边角度为θ+dθ扇形所组成,而圆的面积也就是这无数个扇形面积的累加。由于扇形的夹角(dθ)极其微小,其所对应的弧近乎直线,因而可将其看成极其尖细的等腰三角形——其底边=弧长,高=半径。根据弧度的定义
,可知dθ所对应的弧长就等于 dθ·R,三角形的面积就=
,而圆的面积也就是。
接下来,我来讲解一下如何求出。
求π的公式有很多种,其中最著名的是莱布尼茨级数和马青公式。以下是这两个公式的介绍:
-
莱布尼茨级数: 莱布尼茨级数是一种用于计算π的无穷级数。它的公式如下:
这个级数是一个交替级数,通过不断增加级数的项,可以逐渐逼近π/4的值。当级数的项数越多时,逼近的精度也会越高。
-
马青公式: 马青公式是一种用于计算π的无穷乘积公式。它的公式如下:
这个公式中的每一项都是两个连续的整数相除,通过不断增加乘积的项,可以逐渐逼近π/2的值。同样地,当乘积的项数越多时,逼近的精度也会越高。 谢谢观看