数学之三角函数

小时候总是听别人讲甚么三角函数,感觉十分高大上,像是很深奥的知识。

今天我来讲解一下三角函数,首先就是概念了。

        三角函数的概念(初中)(入门难度)

       三角函数顾名思义就属于函数。那么它和三角有什么关系呢?这就要提到它的概念了

        三角函数简介

        ​​​​​​三角函数是数学中属于 初等函数中的 超越函数的一类函数。它们的本质是任何角的 集合与一个比值的集合的变量之间的映射。通常的三角函数是在 平面直角坐标系中定义的。其 定义域为整个 实数域。另一种定义是在 直角三角形中,但并不完全。现代数学把它们描述成无穷数列的 极限和微分方程的解,将其定义扩展到复数系。 三角函数看似很多、很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。

        一般来说,人尽皆知的三角函数有三种:

        Sin

        全称叫   Sine,也叫正弦函数,它指的是在直角三角形中的角(这个角不能是直角)所对应的对边与斜边的比值a:b = \frac{a}{b}打不了中文,用a代表对边,b代表斜边。在sin后面加上角度来表示是对哪一个角求正弦值。例如\sin \theta

        Cos

        全称叫Cosine,也叫余弦函数,它指的是在直角三角形中的角(这个角不能是直角)所对应的邻边与斜边的比值c:b = \frac{c}{b}用c代表邻边,b代表斜边。在cos后面加上角度来表示是对哪一个角余正弦值。例如\cos \theta

        Tan

        全称叫Tangent,也叫正切函数,它指的是在直角三角形中的角(这个角不能是直角)所对应的对边与邻边的比值a:c = \frac{a}{c}用c代表邻边,a代表对边。在tan后面加上角度来表示是对哪一个角求正切值。例如\tan \theta

这就是三个基本的三角函数,还有一些三角函数不常用,如:Cot Sec Csc

这里就不介绍了,各位自己查吧!

还是介绍一下吧。

        Cot

        全称叫Coangent,也叫余切函数,它指的是在直角三角形中的角(这个角不能是直角)所对应的邻边与对边的比值c:a = \frac{c}{a}用c代表邻边,a代表对边。在cot后面加上角度来表示是对哪一个角求余切值。例如\cot \theta

        Sec

        全称叫Secant,也叫正割函数,它指的是在直角三角形中的角(这个角不能是直角)所对应的斜边与邻边的比值b:c = \frac{b}{c}用c代表邻边,b代表斜边。在sec后面加上角度来表示是对哪一个角求正割值。例如\sec \theta

        Csc

        全称叫Cosecant,也叫余割函数,它指的是在直角三角形中的角(这个角不能是直角)所对应的斜边与对边的比值b:a = \frac{b}{a}用a代表对边,b代表斜边。在sec后面加上角度来表示是对哪一个角求余割值。例如\csc \theta。 

注:文中c代表邻边,b代表斜边,a代表对边

附:

        三角函数的概念(高中)!!!(简单难度)

        想知道为什么要写上高中和初中吗?那就认真往下看吧!

       图片:

这张图片是所有三角函数的高中概念(这个圆必须半径为一)

高中的概念相较于初中而言有一个优势:

可以计算负角度和超过180度的角度

        三角函数诱导公式(普通难度)

诱导公式一

        \sin \left ( 2k\pi +\alpha \right ) = \sin \alpha

        \cos \left ( 2k\pi +\alpha \right ) = \cos \alpha

        \tan \left ( 2k\pi +\alpha \right ) = \tan \alpha

        \cot \left ( 2k\pi +\alpha \right ) = \cot \alpha

        注意:k\in Z

诱导公式二

        \sin \left(\pi +\alpha \right) = -\sin \alpha

        \cos \left(\pi +\alpha \right) = -\cos \alpha

        \tan \left(\pi +\alpha \right) = \tan \alpha

        \cot \left(\pi +\alpha \right) = \cot \alpha

诱导公式三

        \sin (-\alpha) = -\sin \alpha

        \cos (-\alpha) = \cos \alpha

        \tan (-\alpha) = -\tan \alpha

        \cot (-\alpha) = -cot \alpha

诱导公式四

        \sin (\pi -\alpha ) = \sin \alpha

        \cos (\pi -\alpha ) = -\cos \alpha

        \tan (\pi -\alpha ) = -\tan \alpha

        \cot (\pi -\alpha ) = -\cot \alpha

诱导公式五

        \sin (2\pi-\alpha) = -\sin \alpha

        \cos (2\pi-\alpha) = \cos \alpha

        \tan (2\pi-\alpha) = -\tan \alpha

        \cot (2\pi-\alpha) = -cot \alpha

诱导公式六

        \sin(\frac{\pi}{2} + \alpha) = \cos \alpha

        \cos(\frac{\pi}{2} +\alpha) = -\sin\alpha

        \tan(\frac{\pi}{2} +\alpha) = -\cot \alpha

        \cot(\frac{\pi}{2} + \alpha) = -\tan \alpha

        \sin(\frac{\pi}{2} + \alpha) = \cos \alpha

        \cos(\frac{\pi}{2} - \alpha) = \sin \alpha

        \tan(\frac{\pi}{2} - \alpha) = \cot \alpha

        \cot(\frac{\pi}{2} - \alpha) = \tan \alpha

        \sin(\frac{3\pi}{2} + \alpha) =-cos\alpha

        \cos(\frac{3\pi}{2} + \alpha) =\sin\alpha

        \tan(\frac{3\pi}{2} + \alpha) =-\cot\alpha

        \cot(\frac{3\pi}{2} + \alpha) = \tan \alpha

        \sin(\frac{3\pi}{2} - \alpha) = -cos\alpha

        cos(\frac{3\pi}{2} - \alpha) =-\sin\alpha

        tan(\frac{3\pi}{2} - \alpha) =cot\alpha

        \cot(\frac{3\pi}{2} - \alpha) =tan\alpha

这还不够难吗?最精彩的来了:

      

三角函数其他公式(内容超多)

正片开始

        两角和公式

        \sin\left(\alpha+\beta \right ) = \sin\alpha\cos\beta+\sin\beta\cos\alpha

        \sin\left(\alpha-\beta \right ) = \sin\alpha\cos\beta-\sin\beta\cos\alpha

        

        

        

        

        

        

        

        

        

        

        

     

        

### Qt 中实现数学计算(三角函数)的示例 在 Qt 的核心模块中,`QtMath` 提供了一系列用于数学计算的功能,其中包括常见的三角函数操作。这些函数可以直接应用于各种场景下的数学计算需。 以下是基于 `QtMath` 使用三角函数的一个简单示例: #### 示例代码:使用 QtMath 计算正弦、余弦和反正切 ```cpp #include <QCoreApplication> #include <QDebug> #include <QtMath> int main(int argc, char *argv[]) { QCoreApplication a(argc, argv); double angleDegrees = 45.0; // 输入角度为 45 度 double angleRadians = qDegreesToRadians(angleDegrees); // 将角度转换为弧度制 qDebug() << "Sine of" << angleDegrees << "degrees:" << qSin(angleRadians); qDebug() << "Cosine of" << angleDegrees << "degrees:" << qCos(angleRadians); qDebug() << "Arc tangent of sqrt(3):" << qAtan(qSqrt(3)) * (180 / M_PI) << "degrees"; return a.exec(); } ``` 此代码展示了如何利用 `qSin()` 和 `qCos()` 来分别计算给定角度的正弦和余弦[^1]。另外还通过 `qAtan()` 展示了反正切的操作,并将其结果从弧度转回角度表示形式。 --- ### 关于 GSL 科学计算库的扩展应用 如果需要更复杂的科学计算支持,可以考虑引入 GNU Scientific Library (GSL),这是一个强大的开源数计算库。虽然它并非由 Qt 自带,但在某些情况下可能更适合处理高级数学问题。例如,在涉及积分或其他复杂算法时,可结合 GSL 进行开发[^2]。 不过需要注意的是,当项目仅需基本的三角运算时,推荐优先选用轻量级且易于集成的 `QtMath` 模块来完成任务。 --- ### 绘图与数学计算结合实例 假设我们需要在一个自定义控件上绘制带有特定比例关系的内容,比如一个仪表盘或者标志图案,则可以通过重写绘图事件并调用相关方法实现这一目标。下面给出一段简单的例子说明如何将三角函数融入到图形渲染逻辑当中去: #### 示例代码:结合 QPainter 和 QtMath 绘制圆周上的点 ```cpp void CustomWidget::paintEvent(QPaintEvent *) { QPainter painter(this); painter.setRenderHint(QPainter::Antialiasing); int radius = width() / 2; QPointF center(width() / 2, height() / 2); for (double i = 0; i <= 360; ++i) { double radianAngle = qDegreesToRadians(i); qreal x = center.x() + qCos(radianAngle) * radius; qreal y = center.y() + qSin(radianAngle) * radius; painter.drawPoint(x, y); } } ``` 该片段演示了怎样借助循环遍历整个单位圆范围内的每一个位置坐标,并依据当前迭代次数所对应的角速度更新最终显示效果的位置数据[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值