PyTorch
AI 黎明
这个作者很懒,什么都没留下…
展开
-
Pytorch_常用normalization
常用几种normalization:链接1: link.链接2: link.normalization意义:链接3: link.原创 2021-04-17 10:25:40 · 373 阅读 · 0 评论 -
GPU显存不足-优化方案-pytorch
按照优化成本,对可以减少显存占用方案进行排序:目录1.计算总loss时候进行代码优化2.降低batch_size3.Relu 的 inplace 参数4.释放不需要的张量和变量5.数据变小6.精简模型1.计算总loss时候进行代码优化loss本身是一个包含梯度信息的 tensor,正确的求损失和的方式为:total_loss += loss.item()2.降低batch_size适当降低batch size, 则模型每层的输入输出就会成线性减少, 效果相当明显。必须要多个batch_size原创 2020-12-03 22:15:56 · 4058 阅读 · 0 评论 -
pytorch-CroosEntropyLoss使用详解(多维)
目录:1.分类问题(input二维)2.图像分割问题(input多维)1.分类问题(input二维)分类问题输入是每一个batch的各个类别预测概率。input, target, output形状如下:input:(batch_size, class_num)target:(batch_size)output:(batch_size)示例:>>> loss = nn.CrossEntropyLoss()>>> input = torch.randn(3,原创 2020-12-03 20:55:55 · 1898 阅读 · 2 评论 -
结果分析—TrainLoss_TestLoss
参考: link.转载 2020-05-21 11:06:52 · 329 阅读 · 0 评论 -
正则化_原理及Pytorch实现
链接: 原理.链接: Pytorch实现.转载 2020-04-21 15:34:09 · 315 阅读 · 0 评论 -
Python_保存、加载模型
链接: link.转载 2020-04-20 10:17:29 · 655 阅读 · 0 评论 -
torch.nn.Upsample实现上采样
参考链接:https://www.cnblogs.com/wanghui-garcia/p/11399053.html官方文档:https://pytorch.apachecn.org/docs/1.0/nn.htmltorch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)# siz...原创 2020-01-06 11:24:18 · 3673 阅读 · 0 评论 -
Pytorch1.0中常用模块
1. torch.nnfrom torch import nn1.1卷积nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)# in_channels:输入通道# out_channels:输出通道# kernel_size:卷积核...原创 2019-09-29 21:53:59 · 206 阅读 · 0 评论 -
PyTorch_分类器详解_构建并训练CNN
运行错误:RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not usin...原创 2019-09-09 21:23:48 · 437 阅读 · 0 评论 -
PyTorch_图片数据集
1.CIFAR-10CIFAR-10是多伦多大学提供的图片数据库,图片分辨率压缩至32x32,一共有10种图片分类,均进行了标注。适合监督式学习。CIFAR10有60000张图片,其中50000张是训练集,10000张是测试集。数据下载网址:http://www.cs.toronto.edu/~kriz/cifar.html2.ImageNetImageNet网站首页:http://ima...转载 2019-09-09 15:31:10 · 1215 阅读 · 0 评论 -
PyTorch_神经网络详解
神经网络可以使用torch.nn包。nn.Module包含层和方法,forward(input)返回output。神经网络的典型训练过程如下:------定义具有一些可学习参数(或权重)的神经网络。------迭代输入数据集------通过网络处理输入------计算损失(输出离正确有多远)------将梯度传播回网络参数------更新网络的权重,通常使用简单的更新规则:weigh...原创 2019-09-08 21:29:12 · 1415 阅读 · 0 评论 -
PyTorch_Autograd(自动微分)
Autograd是PyTorch中所有神经网络的核心。------torch.Tensor是包的中心类。当.requires_grad为True时,它开始跟踪它上的所有操作。当你完成你的计算,你可以调用.backward()并自动计算所有梯度。这个张量的梯度将累积到.grad属性。------要阻止张量跟踪历史,您可以调用.detach()将其与计算历史分离,并防止将来的计算被跟踪。每个张量都...原创 2019-09-06 17:29:10 · 262 阅读 · 0 评论 -
PyTorch_基础
第三方库:from __future__ import print_function # 使print函数在python2.x版本中正常运行import torch(1) print_function 使print函数在python2.x版本中正常运行。(2) torch 包包含了多维张量的数据结构, 以及基于其上的多种数学操作. 此外, 它还提供了许多用于高效序列化 Tensor ...原创 2019-09-04 11:15:55 · 145 阅读 · 0 评论 -
PyTorch_自动求导
示例代码:import torchfrom torch import autogradx = torch.tensor(1.) # 只有浮点型张量才可以求梯度(导数)a = torch.tensor(1., requires_grad=True) # requires_grad=True 表示对其求导b = torch.tensor(2., requires...原创 2019-08-14 16:39:28 · 139 阅读 · 0 评论 -
PyTorch_GPU加速测试
1.0.0Truecpu 0.20143413543701172 tensor(3496775.5000)cuda:0 0.28623294830322266 tensor(141487., device='cuda:0')cuda:0 0.007987499237060547 tensor(141487., device='cuda:0')原创 2019-08-14 15:41:18 · 10636 阅读 · 6 评论 -
PyTorch安装
1.查看电脑CUDA版本CUDA(Compute Unified Device Architecture)是由NVIDIA公司创立的基于他们公司生产的图形处理器GPUs(Graphics Processing Units,可以通俗的理解为显卡)的一个并行计算平台和编程模型。通过CUDA,GPUs可以很方便地被用来进行通用计算(有点像在CPU中进行的数值计算等等)。在没有CUDA之前,GPUs一般...原创 2019-08-12 11:30:34 · 9374 阅读 · 5 评论