ML / DL
机器学习和深度学习的笔记和心得
浅度学习的ryan
热爱文字,喜欢分享,不断学习,透明小白
展开
-
torch学习 -- pytorch问题大全
pytorch问题大全PyTorch 的设计遵循tensor→variable(autograd)→nn.Module 三个由低到高的抽象层次,分别代表高维数组(张量)、自动求导(变量)和神经网络(层/模块),而且这三个抽象之间联系紧密,可以同时进行修改和操作PyTorch的源码只有TensorFlow的十分之一左右,更少的抽象、更直观的设计使得PyTorch的源码更易于阅读pytorch resnet专题resnet18数字代表的是网络的深度,这里的18指定的是带有权重的18层,包括卷积层和全连原创 2020-08-31 21:01:51 · 504 阅读 · 0 评论 -
卷积网络中的通道(Channel)理解
卷积网络中的通道(Channel)理解卷积网络中有一个很重要的概念,通道(Channel),也有叫特征图(feature map)的。卷积网络中主要有两个操作,一个是卷积(Convolution),一个是池化(Pooling)。其中池化层并不会对通道之间的交互有影响,只是在各个通道中进行操作。而卷积层则可以在通道与通道之间进行交互,之后在下一层生成新的通道,其中最显著的就是Incept-Net里大量用到的1x1卷积操作。基本上完全就是在通道与通道之间进行交互,而不关心同一通道中的交互。一般我们原创 2020-06-27 10:51:50 · 10665 阅读 · 0 评论