卷积网络中的通道(Channel)理解
卷积网络中有一个很重要的概念,
通道(Channel)
,也有叫特征图(feature map)的。卷积网络中主要有两个操作,一个是
卷积(Convolution)
,一个是池化(Pooling)
。其中池化层并不会对通道之间的交互有影响,只是在各个通道中进行操作。
而卷积层则可以在通道与通道之间进行交互,之后在下一层生成新的通道,其中最显著的就是Incept-Net里大量用到的1x1卷积操作。基本上完全就是在通道与通道之间进行交互,而不关心同一通道中的交互。
一般我们说图像的通道,有两种含义的解释
一是图像的色彩通道(如RGB),二是特征图(卷积过滤器的输出结果)的输出通道(out_channel)
实际上,两者本质上是相同的,都是表示之前输入上某个特征分布的数据。
那么先来看看为什么可以说它们是相同的。
一、图像的色彩通道
通道这个概念最初指的是电子图片中RGB通道,或者CMYK通道这样的配色方案,比如说一张RGB的64x64的图片,可以用一个64x64x3的张量来表示。这里的3指的就是通道,分别为红色(Red)、绿色(Green)、蓝色(Blue)三个通道。
因为这三种颜色是三原色,所以基本上可以合成任何人眼可分辨的颜色。而三个