卷积网络中的通道(Channel)理解

本文深入探讨卷积网络中的通道概念,包括图像的色彩通道和特征图的输出通道。通道在卷积和池化层中起着关键作用,1x1卷积尤其用于通道间的交互。通道的终点通常是分类任务的特征向量,而通道的参数决定了卷积核与输入数据的匹配。
摘要由CSDN通过智能技术生成

卷积网络中的通道(Channel)理解

卷积网络中有一个很重要的概念,通道(Channel),也有叫特征图(feature map)的。

卷积网络中主要有两个操作,一个是卷积(Convolution),一个是池化(Pooling)

其中池化层并不会对通道之间的交互有影响,只是在各个通道中进行操作。

而卷积层则可以在通道与通道之间进行交互,之后在下一层生成新的通道,其中最显著的就是Incept-Net里大量用到的1x1卷积操作。基本上完全就是在通道与通道之间进行交互,而不关心同一通道中的交互。

一般我们说图像的通道,有两种含义的解释

一是图像的色彩通道(如RGB),二是特征图(卷积过滤器的输出结果)的输出通道(out_channel)

实际上,两者本质上是相同的,都是表示之前输入上某个特征分布的数据。

那么先来看看为什么可以说它们是相同的。

一、图像的色彩通道

通道这个概念最初指的是电子图片中RGB通道,或者CMYK通道这样的配色方案,比如说一张RGB的64x64的图片,可以用一个64x64x3的张量来表示。这里的3指的就是通道,分别为红色(Red)、绿色(Green)、蓝色(Blue)三个通道。

因为这三种颜色是三原色,所以基本上可以合成任何人眼可分辨的颜色。而三个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值