Python + paddleocr 进行文字识别 并使用PyQt制作简单识别界面(1)

本文介绍了如何在Python环境中安装PaddleOCR库,并展示了如何通过离线模型进行OCR文字识别,包括加载模型、获取识别结果并以图像形式保存的过程。
摘要由CSDN通过智能技术生成

1. 搭建环境

   1)安装Python环境

   2)安装paddlepaddle、paddleocr 、PIL库;

2. 源码

from paddleocr import PaddleOCR,draw_ocr
from PIL import Image
import os

def ocr_recognition(img_path,saved_path):
    
    # ocr 模型加载两种情况
    # 1.离线ocr识别
    ocr = PaddleOCR(det_model_dir = './inference/ch_PP-OCRv4_det_infer/', 
                    rec_model_dir = './inference/ch_PP-OCRv4_rec_infer/',
                    cls_model_dir = './inference/ch_ppocr_mobile_v2.0_cls_infer/',
                    use_angle_cls = True,
                    use_gpu = False)
    # 2.连网时下载ocr识别所需模型
    # ocr = PaddleOCR(use_angle_cls = True, use_gpu = False)

    # 获取识别结果
    result = ocr.ocr(img_path,cls = True)
    boxes = [line[0] for line in result[0]]
    txts = [line[1][0] for line in result[0]]
    scores = [line[1][1] for line in resul[0]]
    
    # 将结果以图像形式保存
    image = Image.open(img_path).convert('RGB')
    img_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
    img_show = Image.formarray(img_show)
    img_show.save(saved_path)


if __name__ == '__main__':
    img_path = 'test.jpg' # 测试图片路径
    saved_path = 'test_out.jpg' # 识别保存路径
    ocr_recognition(img_path, saved_path)

3. 识别效果

                        ​​​​​​​        ​​​​​​​        ​​​​​​​        

                                                            原图

           

                                                        识别效果图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值