- 博客(6)
- 收藏
- 关注
原创 Datawhale X 李宏毅苹果书 AI夏令营 (深度学习进阶——TASK2)
(2)RMSProp:同一个参数的同个方向,学习率也是需要动态调整的,于是就有了一个新的方法———RMSprop(Root Mean Squared propagation)(3)Adam:可以看作 RMSprop 加上动量,其使用动量作为参数更新方向,并且能够自适应调整学习率。梯度很大,但是损失不再下降。如果用一个很小的学习率,如果最后阶段比较平,这个损失在最后阶段会下降的很慢很慢,无法靠近局部最小值。解决方法:(1) AdaGrad:梯度比较大的时候,学习率就减小,梯度比较小的时候,学习率就放大。
2024-08-31 23:59:27 545
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人