Datawhale X 李宏毅苹果书 AI夏令营 (深度学习进阶——TASK2)

1.自适应学习率:

实际训练中因为“步长”的问题,可能存在这种情况:

梯度很大,但是损失不再下降。如果用一个很小的学习率,如果最后阶段比较平,这个损失在最后阶段会下降的很慢很慢,无法靠近局部最小值。

2.能够调节的学习率能够解决这个问腿

解决方法:(1) AdaGrad:梯度比较大的时候,学习率就减小,梯度比较小的时候,学习率就放大。

                  (2)RMSProp:同一个参数的同个方向,学习率也是需要动态调整的,于是就有了一个新的方法———RMSprop(Root Mean Squared propagation)

                    (3)Adam:可以看作 RMSprop 加上动量,其使用动量作为参数更新方向,并且能够自适应调整学习率。Pytorch中的预设已经足够优秀。

3.学习率调度:

快走到终点的时候突然“爆炸”了:

常见策略:学习率退火(衰减)/学习率预热

4.分类:

一般引入独热(one-hot)向量来划分类别,这使得每一类都是有相同的重要性。

同时,通过softmax使预测结果归一化,再跟标签比相似度。

5.这时的损失用交叉熵来计算:

交叉熵表示形式为

使交叉熵最小化。也可以用均方误差,但是这使得自适应学习率再斜率比较大的地方会失效。



一下是实践部分:

创建了一个在线空间,用ipynb的文件格式。clone了一个现有的项目文件,实现了图像分类任务:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值