机器学习
临东
丹顶宜承日,霜翎不染泥
展开
-
【ML1】机器学习之EM算法(含算法详细推导过程)
写在前面的话:对于EM算法(Expectation Maximization Algorithm, 最大期望算法),大家如果仅仅是为了使用,则熟悉算法流程即可。此处的算法推导过程,仅提供给大家进阶之用。对于其应用,主要应用在机器学习和计算机视觉的数据聚类领域。以下是当时自己做的关于EM算法的PPT,供老铁们参考。 ...原创 2018-11-26 15:03:30 · 558 阅读 · 0 评论 -
机器学习(Machine Learning)路线图【待完善】
【图解机器学习】机器学习路线图:【1】● http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/【2】● http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html...原创 2019-05-15 20:54:55 · 393 阅读 · 0 评论 -
【上中课程】词云Word Cloud(标签云、词频分析、文本分析)的实现——应用jieba库和wordcloud库
词云,又称文字云、标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。常见于博客、微博、文章分析等。基本概念:1.语 料 库:预料库是我们要分析的所有文档的集合2.中文分词:指的是将一个汉字序列切成一个一个单独的词3.停 用 词:数据处理的时候,自动过滤掉某些字或词...原创 2019-03-24 14:23:54 · 2567 阅读 · 0 评论 -
tensorflow
http://www.tensorfly.cn/原创 2019-03-24 22:33:42 · 108 阅读 · 0 评论 -
词频分析准备工作——jieba库、WordCloud库的安装。
pip包的升级:1.pipshow pip 查看当前pip版本【pip如有新版本一般都会在控制面板实时显示的】2.python -m pip install --upgrade pip 升级pipjieba中文分词第三方库的安装:这个也属于第三方库,需要单独下载安装。一、在官网中下载jieba压缩包。【https://pypi.org/project/jieba/】...原创 2019-03-06 20:52:19 · 1897 阅读 · 1 评论 -
【ML_Algorithm 6 】贝叶斯(Bayes)——算法概念梳理与实际应用
基本概念导引:贝叶斯法是关于随机事件A和B的条件概率和边缘概率的。其中P(A|B)是在B发生的情况下A发生的可能性。 为完备事件组,即 在贝叶斯法则中,每个名词都有约定俗成的名称:P(A)是A的先验概率或边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。P(B|A)是已知A发生后B的条件...原创 2018-12-23 21:48:58 · 1986 阅读 · 1 评论 -
【ML_Algorithm 5 】决策树(Decision Tree)——算法实际应用
本文对决策树算法进行简单的总结和梳理,并对著名的决策树算法ID3(Iterative Dichotomiser 迭代二分器)进行实现,实现采用Python语言,一句老梗,“人生苦短,我用Python”,Python确实能够省很多语言方面的事,从而可以让我们专注于问题和解决问题的逻辑。根据不同的数据,我实现了三个版本的ID3算法,复杂度逐步提升:1.纯标称值无缺失数据集2.连续值和标称值...转载 2018-12-16 09:09:42 · 1849 阅读 · 0 评论 -
【ML_Algorithm 4 】决策树(Decision Tree)——算法概念梳理
引:决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。构造决策树的基本思想(大众化表述):为的是随着树深度的增加,节点的熵迅速的降低(熵值越低,节点越纯)。熵降低的速度越快越好,这样才能有望得到一颗高度尽可能矮的决策树。几个概念的引出:...原创 2018-12-12 21:09:15 · 519 阅读 · 0 评论 -
【ML_Preparation 3 】Numpy科学计算库——常用方法列举
Anaconda 中对于该库已经集成好了,不需要再进行繁琐操作。如果用的不是 Anaconda 软件,则需要自己通过 pip 命令来安装Numpy库。import numpy当不清楚Numpy中某个函数的功能及用法时,我们可以使用 print (help(numpy.所需查询函数))即可查询该函数的帮助文档。!。各参数解释/函数举例。可以考虑编译时同时开启两个编译器,一个用...原创 2018-12-03 21:01:55 · 261 阅读 · 0 评论 -
【ML_Preparation 1 】Anaconda 国内站点快速下载、安装及相关库的安装
Anaconda 的获取、安装使用Anaconda 安装 python 环境,国内镜像地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/该镜像站点基本涵盖所有 Anaconda 版本。自行下载安装即可。速度要比国外站点快很很很多。安装完成后,从开始菜单栏打开 Anaconda 文件列表,可以查看到以下诸多选项。...原创 2018-12-01 22:53:44 · 168 阅读 · 0 评论 -
【ML_Algorithm 2 】逻辑回归(Logistic Regression)——算法推导
逻辑回归其实做的是一个分类的事怎么样做到的分类:(可以输入任何数,该式可以转换成一个0或1的取值)该算法实际上是用回归的方法转把数据换成了分类(二分类)的问题。 此式:咱们要找出来一个θ,使该θ和x进行组合之后,使得得到的值和y的真实值相等的概率最大也就是说咱们还要进行一个极大似然估计。梯度下降,横空出世——解法与上一节——线性回归相同。但是,不得不说的点...原创 2018-12-01 20:59:21 · 305 阅读 · 0 评论 -
【ML2】机器学习之线性回归
【知识储备】线性回归:1: 函数模型(Model):假设有训练数据 那么为了方便我们写成矩阵的形式 2: 损失函数(cost): 现在我们需要根据给定的X求解W的值,这里采用最小二乘法。 最小二乘法:如果有很多的给定点,这时候我们需要找出一条线去拟合它,那么先假设这个线的方程,然后把数据点代入假设的方程得到观测值,求使得实际值与观测值相减的平方和最小的参...原创 2018-11-27 22:00:50 · 179 阅读 · 0 评论 -
【ML_Algorithm 1】线性回归(Linear Regression)——算法推导及代码实现
::::::::线性回归:::::::: 第一式 第二式从式一到式二,需要添加一个 项,其中 为 = 1 的常数量。只是为了容易写成代码而已。真实值=预测值+误差(误差是独立且具有相同的分布,通常认为服从均值为0的方差为 的高斯分布。)此式意思是要找到一个θ值使得该θ与x的组合完之后,使得组合值接近y真实值的概率最大...原创 2018-11-30 20:32:39 · 675 阅读 · 0 评论 -
【ML_Algorithm 3 】回归算法的实际应用(一)
此实例便是在二维空间中给出了两类数据点,现在需要找出两类数据的分类函数模型。即若输入新数据,所训练模型应可判断该数据属于二维空间中两类数据中的哪一类!在给出Python实现的示例代码展示之前,先介绍一下两种优化准则函数的方法: 1、梯度上升算法 2、随机梯度上升算法梯度上升算法: 梯度上升算法和我们平时用的梯度下降算法思想类似,梯度上升算法基于的思想是:要找到某个函...原创 2018-12-04 21:10:37 · 840 阅读 · 0 评论 -
【ML_Preparation 2 】Anaconda 详解及多 Python 版本切换实现
1 Anaconda具体是用来干什么的根据其主页介绍:https://www.anaconda.com/what-is-anaconda/Anaconda - The Most Popular Python Data Science PlatformAnaconda Distribution - With over 6 million users, the open source An...转载 2018-12-02 13:16:58 · 363 阅读 · 0 评论 -
文献 | 2010-2016年被引用次数最多的深度学习论文(修订版)——【转载】
一、书籍Deep learning (2015)作者:Bengio下载地址:http://www.deeplearningbook.org/二、理论1.在神经网络中提取知识Distilling the knowledge in a neural network作者:G. Hinton et al.2.深度神经网络很易受骗:高信度预测无法识别的图片Deep neur...转载 2019-05-08 16:59:09 · 326 阅读 · 0 评论