import numppy as np
arr = np.arrary([1,2,3])
arr1 = np.arrary([[1,2,3],[4,5,6],[9,10,11]])
字符串》浮点》整数
- zeros()
- ones()
- linspace()
- arange()
- random系列
np.ones(shape(3,4))
np.linspace(1,100,num =2)
np.arange(10,50,step =2)
np.random.randint(0,100,size=(5,3))
import matplotlib.pyplot as plt
img_arr = plt.imread('.//1.jpg') #返回数组
plt.inshow(img_arr) #显示numpy数组。
img_arr = img_arr - 100 #将每个数组元素都减去100
常用函数:
arr.shape、arr.ndim、arr.size、arr.dtype、type(arr)
常用类型:
索引和切片
arr = np.random.randint(1,100,size=(5,6))
arr[1] #取出了numpy数组中的下标为1的行数据
arr[[1,3,4]] # 取出多行数据,下标为 1.、3、4的行数
arr[0:2] # 取出前2行数据
arr[0:2,1:2] # 取出前2行、前2列数据
arr[::-1] # 将数据的行倒置
arr[:,::-1] # 将数据的列倒置
arr[::-1,::-1] # 将数据的所有元素倒置
#将一个图片进行左右翻转
img_arr = plt.imread('.//1.jpg') #返回数组
plt.inshow(img_arr) #显示numpy数组。
plt.inshow(img_arr[:,::-1,:]) #左右翻转
plt.inshow(img_arr[::-1,:,:]) #上下翻转
plt.inshow(img_arr[66:200,78:300,:]) #图片的裁剪功能
变形reshape
arr.reshape(shape=(30,0)) # 将二维的数组变形成1维
arr.reshape(shape=(5,6)) # 将二维的数组变形成5行6列
级联操作
将多个numpy数组进行横向或纵向的拼接
axis轴向的理解
np.concatenate((arr1,arr2),axis = 0) # 列的拼接
np.concatenate((arr1,arr2),axis = 1) # 行的拼接
常用的聚合操作
sum、max、min、mean
arr.sum(),arr.sum(axis=0),arr.sum(axis=1) # 求和
常用的数据函数
- numpy提供了标准的三角函数:sin()、cos()、tan()
- numpy.around(a,decimals)函数返回指定数字的四舍五入。
- 参数说明:
- a:数组
- decimals:舍入的小数位数,默认值为0,如果为负,整数将将四舍五入到小数点左侧的位置。
np.sin(arr)、 np.sin(2.5)
np.around(3.84)
arr.std()、arr.var() # 标准差、方差
矩阵
#np.matrixlib.
arr = np.eye(6) # 创建一个简单的单位矩阵
arr.T #转置矩阵
矩阵相乘
numpy.dot(a,b,out=None)
a:ndarray 数组
b:ndarray 数组