python numpy

import numppy as np

arr = np.arrary([1,2,3])

arr1 = np.arrary([[1,2,3],[4,5,6],[9,10,11]])

字符串》浮点》整数

  •  zeros()
  • ones()
  • linspace()
  • arange()
  • random系列

np.ones(shape(3,4))

np.linspace(1,100,num =2)

np.arange(10,50,step =2)

np.random.randint(0,100,size=(5,3))

import matplotlib.pyplot as plt

img_arr = plt.imread('.//1.jpg')     #返回数组

plt.inshow(img_arr)    #显示numpy数组。

img_arr =  img_arr - 100    #将每个数组元素都减去100 

常用函数:

arr.shape、arr.ndim、arr.size、arr.dtype、type(arr)

常用类型:

索引和切片

arr = np.random.randint(1,100,size=(5,6))

arr[1]    #取出了numpy数组中的下标为1的行数据

arr[[1,3,4]]   # 取出多行数据,下标为 1.、3、4的行数

arr[0:2]    # 取出前2行数据

arr[0:2,1:2]    # 取出前2行、前2列数据

arr[::-1]    # 将数据的行倒置

arr[:,::-1]    # 将数据的列倒置

arr[::-1,::-1]    # 将数据的所有元素倒置

#将一个图片进行左右翻转

img_arr = plt.imread('.//1.jpg')     #返回数组

plt.inshow(img_arr)    #显示numpy数组。

plt.inshow(img_arr[:,::-1,:])    #左右翻转

plt.inshow(img_arr[::-1,:,:])    #上下翻转

plt.inshow(img_arr[66:200,78:300,:])    #图片的裁剪功能

变形reshape

arr.reshape(shape=(30,0))    # 将二维的数组变形成1维

arr.reshape(shape=(5,6))    # 将二维的数组变形成5行6列

级联操作

将多个numpy数组进行横向或纵向的拼接

axis轴向的理解

np.concatenate((arr1,arr2),axis = 0)    # 列的拼接

np.concatenate((arr1,arr2),axis = 1)     # 行的拼接

常用的聚合操作

sum、max、min、mean

arr.sum(),arr.sum(axis=0),arr.sum(axis=1)       # 求和

常用的数据函数

  • numpy提供了标准的三角函数:sin()、cos()、tan()
  • numpy.around(a,decimals)函数返回指定数字的四舍五入。
  •         参数说明:
  •                 a:数组
  •                 decimals:舍入的小数位数,默认值为0,如果为负,整数将将四舍五入到小数点左侧的位置。

np.sin(arr)、 np.sin(2.5)

np.around(3.84)

arr.std()、arr.var()  # 标准差、方差

矩阵

#np.matrixlib.

arr = np.eye(6)     # 创建一个简单的单位矩阵

arr.T    #转置矩阵

矩阵相乘

numpy.dot(a,b,out=None)  

         a:ndarray 数组

         b:ndarray 数组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值