自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(62)
  • 资源 (1)
  • 收藏
  • 关注

原创 python numpy.memmap

python memmap

2022-08-10 19:49:39 1613 1

原创 python多线程

python多线程

2022-08-08 11:18:23 270

原创 医学图像配准综述学习

医学图像配准综述学习目前针对医学图像配准的综述较少,笔者只找到了两篇:一篇发表在《Machine Vision and Applications》-- Deep Learning in Medical Image Registration: A Survey另一篇发表在《Physics in Medicine ans Biology》-- Deep Learning in Medical Image Registration: A ReviewPMB这篇相对新且全面,故下面只对该论文的内容做总结。

2022-05-14 01:03:22 3821 2

原创 随机种子复现模型

随机种子复现模型常见的博客中提到的设置如下def _init_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) #multi-gpu os.environ['PYTHONHASHSEED'] = str(seed) torch.backends.cudnn.dete

2022-04-07 18:55:45 2054

原创 Git基本操作

Git基本操作Git操作的详情可以参考《Pro Git》这本书,这里记录下简单的向git提交代码的流程。# 常用的git操作git status # 查看当前分支状态git branch # 查看所有分支git checkout branchname # 切换分支git pull # 拉取远程仓库该分支最新节点git log # 查看当前分支改动日志git add # 添加改动git commit -m "XXX" # 提交改动到暂存区,并记录message XXX向git提交代码的流

2022-04-06 15:23:33 542

原创 模型参数量/flops/吞吐量的计算

模型参数量/flops/吞吐量的计算参数量def computation_paras(kernel_size, in_channels, out_channels, out_size, groups = 1): return kernel_size ** 2 * in_channels * out_channels / (groups * 2 ** 20) # M为单位flopsdef computation_flops(kernel_size, in_channels, out_chan

2022-03-14 12:07:41 2367

原创 Python相对导入绝对导入

Python相对导入绝对导入参考:https://zhuanlan.zhihu.com/p/63143493

2022-03-14 12:05:10 986

原创 Deep Learning Based Registration文章阅读(十六)《NccFlow: Unsupervised Learning of Optical Flow With Non-oc》

Deep Learning Based Registration文章阅读(十六)本次论文是2021.7月的文章,挂在arXiv,笔者还不知道发在了哪里,投的应该是IEEE Trans期刊,题目《NccFlow: Unsupervised Learning of Optical Flow With Non-occlusion from Geometry》。这篇文章的贡献是在non-occlusion的区域引入了几何约束,从而提升光流估计的准确度。在之前的无监督光流估计的工作中,引入了亮度一致性损失,但是亮度

2022-01-15 16:06:51 2207

原创 定时运行bash清除buffer/cache

定时运行bash清除buffer/cacheCode

2021-12-17 13:23:35 738

原创 tensorflow实现Local Context Normalization

tensorflow实现Local Context Normalization参考代码:PyTorch implementation for Local Context Normalization: Revisiting Local Normalization参考文章:Local Context Normalization: Revisiting Local Normalization代码实现的是torch的code,以及是对2D图像的LCN,笔者改写成了tensorflow 1.4的code以及3D

2021-12-15 18:48:32 1765 1

原创 tensorflow查看保存模型的参数

tensorflow查看保存模型的参数参考博客:tensorflow 模型存储、查看与载入tensorflow小技巧之查看保存模型参数的 name 和 valuemodel_path = 'your/path/to/model/model-num'# Read data from checkpoint filereader = pywrap_tensorflow.NewCheckpointReader(model_path)var_to_shape_map = reader.get_varia

2021-12-09 00:01:19 1457

原创 tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized val

开了两个session:https://blog.csdn.net/weixin_41950276/article/details/84875250

2021-11-25 23:38:16 1425

原创 tensorflow1.4将一个变量赋值给另一个变量

tensorflow1.4将一个变量赋值给另一个变量tf.assign: 赋值后变量名称没变,所以应该还是不同变量if args.if_same_encoder_init: var = tf.global_variables() var_encoder1 = [val for val in var if 'Encoder1' in val.name] var_encoder2 = [val for val in var if 'Encoder2' in val.name]

2021-11-25 23:35:42 500

原创 Deep Learning Based Registration文章阅读(十五)Learning by Distillation: A Self-Supervised Learning Framewo

Deep Learning Based Registration文章阅读(十五)《Learning by Distillation: A Self-Supervised Learning Framework for Optical Flow Estimation》论文来自TPAMI-2021年6月。论文提出了一种新的自监督蒸馏学习的估计光流的框架,以解决两个问题:1、目前大多数的(这篇文章写作时)全监督光流网络是使用合成数据来做预训练,并且如果要达到sota,一般要严格遵守不同合成数据集做预训练的训练数据

2021-11-25 15:25:41 1923

原创 Deep Learning Based Registration文章阅读(十四)Deformable MR-CT Image Registration Using an Unsupervised, D

Deep Learning Based Registration文章阅读(十四)本篇文章《Deformable MR-CT Image Registration Using an Unsupervised, Dual-Channel Network for Neurosurgical Guidance》来自于MIA 2021,本篇文章处理多模态问题还是基于GAN来做,通过结合CycleGAN网络来将多模态问题转为单模态问题来解。整体框架还是无监督,NCC做转为单模态后的similarity loss,个人

2021-11-17 14:52:00 894

原创 《Pro Git》

《Pro Git》git是分布式版本控制系统,它直接记录快照,而非差异比较。git近乎所有操作都是本地执行。git通过SHA-1散列计算校验和,以保证数据的完整性。git一般只添加数据,所以git几乎不会执行任何不可逆操作。三种状态已提交:表示数据已经安全的保存在本地数据库中已修改:表示修改了文件,但还没保存到数据库中已暂存:表示对一个已修改文件的当前版本做了标记,使之包含在下次提交的快照中三个工作区域Git仓库,工作目录,暂存区域安装...

2021-11-16 14:56:26 477

原创 tmux终端复用

tmux终端复用最近终端老是自己断掉,导致运行中的程序也断掉,使用nohup … &后,终端断掉再开一个新的,后天运行的程序就会调不到前台,变成“孤儿”程序(目前笔者没了解到相关方法,如果有请评论告知)。了解到screen和tmux都可以解决。下面给出tmux的一些基本用法,一般情况足够了。安装直接 sudo apt-get install tmux设置在~/.tmux.conf中输入set -g mouse on保存退出,重新进终端或者source ~/.tmux.conf一下就可以用

2021-11-15 19:39:11 360

原创 Linux命令前后台切换

Linux命令前后台切换nohup your_order & 可以把程序放到后台运行jobs 查看后台程序及运行情况fg n 把工作号为n的任务放到前台运行ctrl + z 把当前前台任务放到后台并暂停bg n把工作号为n的暂停任务在后台运行...

2021-11-15 13:45:13 1305

原创 《Machine Learning Yearning》

《Machine Learning Yearning》概要

2021-11-14 16:07:46 1245

原创 tensorboard提取图片

tensorboard提取图片https://gist.github.com/hysts/81a0d30ac4f33dfa0c8859383aec42c2#!/usr/bin/env pythonimport argparseimport pathlibimport numpy as npimport cv2from tensorboard.backend.event_processing import event_accumulatordef main(): parser =

2021-10-28 20:44:32 917

原创 Linux重启网络服务service network restart无效

Linux重启网络服务用systemctl restart networkingUbuntu Server: Fail to restart networking.service: Unit network.service not found

2021-10-15 17:43:59 1578

原创 3D Slicer auto W/L实现

3D Slicer auto W/L实现参考博客:3Dslicer1:入门及基本控制自动窗宽窗位的一些思路How auto W/L is implemented in 3DSlicer?python代码:根据How auto W/L is implemented in 3DSlicer?实现// auto W/Ldef auto_wl(img, low=0.1, high=0.99): imhist, bins = np.histogram(img.flatten(), int(ma

2021-09-26 17:19:48 296

原创 python图像序列转为git动图

python图像序列转为git动图python代码:// make gifimport imageioimport osfrom functools import cmp_to_keydef compare(num1, num2): if int(num1) > int(num2): return 1 elif int(num1) == int(num2): return 0 else: return -1ima

2021-09-26 17:11:36 278

原创 算法面经问题初步整理

算法面经问题初步整理记录商汤AI医疗:1、斐波那契数列2、和为0的三元组思路:先把数组排序,两层循环,第一层循环代表第一个数,第二层循环参考找数组中和为特定值的二元组;如果要找所有的三元组,则在找到一组解后,left += 1, right -= 1, 为了避免重复解,可以判断下left和left -1,right和right + 1是否相等,相等就跳过。3、python装饰器的作用装饰器的作用就是用一个新函数封装旧函数(是旧函数代码不变的情况下增加功能)然后会返回一个新函数,新函数就叫做装饰器

2021-08-10 22:49:53 314

原创 R-CNN Family

R-CNN参考:From R-CNN to Mask R-CNNObject Detection for Dummies Part 3: R-CNN Family

2021-07-31 16:25:46 106

原创 多模态医学图像数据集

多模态医学图像数据集参考博客:数据集:一文道尽医学图像数据集与竞赛医学影像系列:一 数据集合集 最新最全医学图像数据集汇总医学影像数据集集锦医学影像开源数据集脑的数据一般可以多模态,MRI-T1/T2 etc, CT/MRI,单独的配准图像应该很难找,一般是找分割的多模态图像。上海交通MedMNIST10 datasets, single modal, classification taskLink:https://arxiv.org/pdf/2010.14925.pdfMedPix

2021-07-24 00:39:44 13000 40

原创 目标检测文章阅读(一)《End-to-end Object Detection with Transformer》

目标检测文章阅读(一)文章《End-to-end Object Detection with Transformer》code: https://github.com/facebookresearch/detrIntroduction本篇文章是比较有影响力的DETR,开End-to-end object detection之先河。之前的object detection的model,ex. Fast-RCNN,YOLOv2,RetinaNet等都会通过对数据集的先验知识来设计一些proposal,

2021-07-14 21:58:06 543

原创 人体姿态估计文章阅读(一)《Integral Human Pose Regression》

人体姿态估计文章阅读(一)文章《Integral Human Pose Regression》人体姿态估计方法目前使用的都是detection based method。这种方法首先生成一个heat map,其物理意义可以理解为是image中人体关节的概率。一般来说,需要预测几个关节点,就会在backbone的最后生成几个channel的feature,然后取每一个channel的的max作为关节点的location,然后和ground truth做回归。这样的做法在本质上有两个缺点:1、取max的op

2021-07-14 13:16:04 706

原创 Deep Learning Based Registration文章阅读(十三)UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Lea

Deep Learning Based Registration文章阅读(十三)本次文章是CVPR2021 megvii关于无监督光流的一篇,孙剑通讯。Motivation目前的无监督光流的sota是UFlow,整合了目前为止包括pyramid structure等各个模块后形成的框架。但是目前的pyramid structure有两个问题,这篇文章也是根据这两个问题提出了相应的method解决从而取得无监督sota。第一,pyramid structure中存在upsampling的操作,但是目前

2021-07-04 18:05:20 966

原创 Deep Learning Based Registration文章阅读(十二)《AutoFlow: Learning a Better Training Set for Optical Flow》

Deep Learning Based Registration文章阅读(十二)这次的文章是CVPR2021关于光流的一篇文章《AutoFlow: Learning a Better Training Set for Optical Flow》。光流的学习可以分为有监督和无监督两类,对于有监督的学习,通常需要flow field的ground truth。真实世界中通常很难获得这样的ground truth,所以一个目前常用的训练方法是用合成数据。现在最常用的合成数据是Flying Chairs和Flyi

2021-07-04 16:46:38 642

原创 Backbone

BackboneLeNet-5:《Gradient-based learning applied to document recognition》AlexNet:《ImageNet Classification with Deep Convolutional Neural Networks》NIPS 2012VGG:《VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION》ICLR 2015InceptionNet:

2021-06-30 16:55:04 77

原创 Learning rate调参调研

Learning rate调参调研learning rate的调整一般和batch size密切相关,笔者参考以下资料后对learning rate调整做了一个简单整理参考资料:如何理解深度学习分布式训练中的large batch size与learning rate的关系?PS: 上面博客提到的找最优初始学习率的方法参考如何找到最优初始学习率?Priya Goyal《Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour》Smith

2021-06-21 14:40:29 119

原创 Deep Learning Based Registration文章阅读(十一)《A Coarse-to-fine Deformable Transformation Framework For U》

Deep Learning Based Registration文章阅读(十一)本次文章是TMI的文章《A Coarse-to-fine Deformable Transformation Framework For Unsupervised Multi-contrast MRImage Registration With Dual Consistency Constraint》。总体感觉方法的创新性不是很高,但是做的很规矩很完整。Motivation本文的motivation主要是说MR图像有很多

2021-06-18 17:51:40 739 2

原创 Drop Out

Drop OutUnderstanding Dropout with the Simplified Math behind itA Gentle Introduction to Dropout for Regularizing Deep Neural Networks

2021-06-15 11:17:08 113 1

原创 Batch Normalization

Batch Normalization深度学习中常用Normalization包括Batch Normalization, Layer Normalization, Instance Normalization等,本文根据文章《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》内容理解Batch Normalization。先验知识文中提到,因为Network中的每

2021-06-08 18:58:09 108

原创 深度学习初始化整理

深度学习初始化内容整理笔者最近遇到在配准任务中初始化会极大影响训练结果的现象,本文目的旨在调研一些博客,文章,书籍中关于初始化的知识并记录,疏漏之处还请评论告知。参考资料:Initializing neural networks...

2021-05-30 17:44:51 278

原创 Deep Learning Based Registration文章阅读(十)《Learning Optical Flow from a Few Matches》

Deep Learning Based Registration文章阅读(十)本次文章是CVPR2021年《Learning Optical Flow from a Few Matches》。基于深度学习的光流法的研究一直是CV领域坚持不懈的追求。目前取得sota的RAFT(Recurrent all-pairs field transforms for optical flow)需要计算dense correlation volume,这会带来很大的memory和computation的负担,并且对于f

2021-05-14 22:27:46 733

原创 Deep Learning Based Registration文章阅读(九)《ViT-V-Net: Vision Transformer for Unsupervised Volumetric M》

Deep Learning Based Registration文章阅读(九)本次文章是一篇arXiv上的短文《ViT-V-Net: Vision Transformer for Unsupervised Volumetric Medical Image Registration》,首次把Transformer用于3D医学图像配准中。Transformer作为NLP领域目前大放异彩的结构,自2020年10月被首次用到cv分类任务中后,现在在cv各个任务中,包括细粒度分类,目标检测,分割等都取得了比CNN更

2021-04-30 16:44:55 1923 2

原创 Deep Learning Based Registration文章阅读(八)《Learning optical flow from still images》

Deep Learning Based Registration文章阅读(八)本次文章来自于CVPR2021的《Learning optical flow from still images》,关于光流的文章还有几篇,为《Learning Optical Flow from a Few Matches》、《Upsampling Pyramid for Unsupervised Optical Flow Learning》等。本篇文章的题目比较吸引人,从静态图像学光流,笔者以为是把SIFT flow的思想

2021-04-15 23:07:57 675 1

原创 Deep Learning Based Registration文章阅读(七)《CycleMorph: Cycle consistent unsupervised deformable image r

Deep Learning Based Registration文章阅读(七)本次文献是MIA 2021年3.21号最新的文章《CycleMorph: Cycle consistent unsupervised deformable image registration》。本篇文章的网络名字沿用了VoxelMorph的格式,但是不是VoxelMorph团队做的。这篇文章的baseline沿用了VoxelMorph并加以改进,主要是引入了一个cycle consistent,这个约束类似于cycleGAN。

2021-04-08 17:43:08 1298

图像配准Flow场二维可视化——SIFT Flow Matlab可视化代码

图像配准中估计出的Flow场的可视化,与FlowNet以及SIFT Flow文章的可视化策略相同

2021-01-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除