
python
文章平均质量分 87
lingding_cn
码农老了
展开
-
Dify中ChatFlow与WorkFlow的区别及使用场景详解
详细解析Dify平台中ChatFlow与WorkFlow的概念、特点、API使用方法及不同应用场景,帮助开发者选择合适的工作流类型构建AI应用。原创 2025-04-25 13:51:21 · 1796 阅读 · 0 评论 -
MCP、RAG与Agent架构设计:AI系统中的协同与差异
本文详细介绍了MCP(模块化能力路径)、RAG(检索增强生成)和Agent(智能代理)三种AI架构设计方法的核心概念、工作原理及实现方式。通过代码示例和详细分析,阐述了三种架构间的层次关系、互补性以及可能的集成方式。文章还深入探讨了各架构在AI系统中的优缺点,包括MCP的模块化优势与路径规划挑战、RAG的知识增强能力与检索依赖问题、Agent的自主决策能力与复杂度控制难题。最后展望了三种架构融合发展的未来趋势,指出分层智能架构、动态能力配置和自适应架构选择将成为AI系统设计的重要方向。这篇文章适合AI架构设原创 2025-04-20 11:48:44 · 1084 阅读 · 0 评论 -
MCP调用MongoDB数据库实践与RAG技术对比分析
本文详细介绍了MCP(多云平台)与MongoDB数据库的结合应用,从两者的基本概念入手,深入分析如何通过MCP服务调用MongoDB数据库,并提供了完整的代码实现。同时,文章对比了这种方式与RAG(检索增强生成)技术的异同,分析了各自的优缺点,帮助读者更好地理解两种技术在实际应用中的选择依据。文章包含丰富的代码示例和实践指导,适合对数据库管理、云平台开发和大语言模型应用感兴趣的技术人员阅读。原创 2025-04-20 11:36:00 · 1178 阅读 · 0 评论 -
LangChain与MCP的完美结合:langchain_mcp_adapters实践指南
LangChain是一个用于开发基于大型语言模型(LLM)应用的框架,它提供了一系列工具和抽象,简化了LLM应用的开发过程。langchain_mcp_adapters是一个连接LangChain和MCP的适配器库,它允许LangChain框架中的应用无缝地使用MCP服务提供的工具和资源。# 创建MCP服务器# 定义工具函数"""计算两个数的和"""# 注册工具description="计算两个整数的和",schema={},# 定义资源content={},原创 2025-04-20 09:35:17 · 2076 阅读 · 2 评论 -
Python FastMCP实现MCP实践全解析:SSE与STDIO通信模式详解
本文全面介绍Python FastMCP框架在MCP实践中的应用,详细解析了MCP中SSE和STDIO两种通信模式的区别和实现方法,并提供了完整的代码示例,帮助开发者快速搭建MCP服务。原创 2025-04-19 20:48:21 · 5218 阅读 · 0 评论 -
RAG Embeddings模型:原理、应用与实践
RAG(Retrieval-Augmented Generation)是一种结合了检索和生成的混合模型架构,由Facebook AI Research在2020年提出。它通过将传统的语言模型与外部知识库相结合,显著提升了模型在知识密集型任务中的表现。原创 2025-04-15 12:46:52 · 655 阅读 · 0 评论 -
Drools vs Python: 读取Word文档段落格式的架构分析与实现对比
本文详细对比了使用Drools规则引擎和Python语言读取Word文档段落格式的两种技术方案。文章首先分别介绍了两种技术的架构设计思路和核心代码实现,然后从性能、开发效率、可维护性等多个维度进行了全面对比分析,最后给出了不同场景下的技术选型建议。原创 2025-04-12 20:37:30 · 345 阅读 · 0 评论