Spring AI MCP实践指南:通过MCP连接你的应用与AI大模型

Spring AI MCP实践指南:通过MCP连接你的应用与AI大模型

随着人工智能技术的快速发展,如何将AI能力无缝集成到现有应用中成为开发者面临的重要挑战。Spring AI提供了强大的框架来简化AI集成过程,而Model Context Protocol (MCP)则为AI模型与外部工具交互提供了标准化协议。本文将深入探讨Spring AI与MCP的结合实践,帮助开发者构建功能强大的AI增强型应用。

一、MCP简介

Model Context Protocol (MCP)是一种标准化协议,使AI模型能够以结构化方式与外部工具和资源进行交互。它为大语言模型(LLM)提供了与外部世界交互的标准接口,支持多种传输机制,为不同环境提供灵活性。

MCP的核心功能:

  1. 工具调用:允许AI模型发现并执行外部工具
  2. 资源访问:通过标准化URI模板访问外部资源
  3. 提示管理:处理提示模板和参数化提示内容
  4. 文件系统访问:通过根目录限制安全访问文件系统
  5. 结构化日志:提供标准化的日志记录机制

MCP通过多层架构实现,包括客户端/服务端层、会话层和传输层,确保消息的可靠传递和处理。它支持同步和异步通信模式,适用于各种应用场景。

二、Spring AI简介

Spring AI是Spring生态系统的最新成员,专注于简化AI工程的应用框架。它将Spring生态系统的设计原则(如可移植性和模块化设计)应用到AI领域,促进使用POJO(普通Java对象)作为应用构建块。

Spring AI的主要特点:

  1. 支持多种AI模型提供商:包括Anthropic、OpenAI、Microsoft、Amazon、Google和Ollama等,支持文本生成、嵌入、图像生成、音频处理等多种模型类型。
  2. 可移植API:跨AI提供商的统一API,支持同步和流式API选项。
  3. 结构化输出:将AI模型输出映射到Java对象。
  4. 向量数据库支持:支持多种向量数据库提供商。
  5. 工具/函数调用:允许模型请求执行客户端工具和函数。
  6. 可观测性:提供AI相关操作的洞察。
  7. 文档注入ETL框架:用于数据工程。
  8. AI模型评估:帮助评估生成内容并防止幻觉响应。
  9. ChatClient API:用于与AI聊天模型通信的流畅API。
  10. Spring Boot自动配置:所有AI模型和向量存储的自动配置和启动器。

Spring AI MCP则是Spring AI生态系统的一部分,它扩展了MCP Java SDK,提供Spring Boot集成,包括客户端和服务器启动器,大大简化了MCP应用的开发。

三、MCP中SSE和stdio的区别

MCP支持两种主要的传输机制:SSE(Server-Sent Events)和stdio(标准输入/输出)。这两种机制各有优缺点,适用于不同的场景。

SSE(Server-Sent Events)

SSE是一种基于HTTP的单向通信技术,允许服务器向客户端推送数据。在MCP中,SSE传输主要用于分布式系统,支持远程访问和多客户端连接。

SSE的特点:
  1. 基于HTTP:利用标准HTTP协议,无需特殊端口或协议。
  2. 远程通信:支持不同物理机器之间的通信。
  3. 多客户端支持:可以同时服务多个客户端。
  4. 可扩展性:适合分布式系统和云部署场景。
  5. 安全性:可以利用HTTPS等标准安全机制。
SSE的适用场景:
  • 分布式系统架构
  • 需要远程访问的应用
  • 微服务之间的通信
  • 多用户同时访问的系统
  • 云部署环境

stdio(标准输入/输出)

stdio是一种进程内通信机制,通过标准输入和输出流进行数据传输。在MCP中,stdio传输主要用于本地集成,提供低延迟和简单的设置。

stdio的特点:
  1. 进程内通信:直接通过进程的标准输入/输出流进行通信。
  2. 低延迟:没有网络开销,响应更快。
  3. 简单设置:无需配置网络端点或处理网络问题。
  4. 单一客户端:通常用于一对一的客户端-服务器通信。
  5. 本地执行:客户端和服务器在同一台机器上运行。
stdio的适用场景:
  • 本地集成
  • 单用户应用程序
  • 命令行工具
  • 需要低延迟的应用
  • 开发和测试环境

二者详细对比

| 特性 | SSE | stdio |

|------|-----|-------|

| 通信方式 | 基于HTTP的单向通信 | 进程内标准输入/输出流 |

| 网络依赖 | 需要网络连接 | 不依赖网络 |

| 延迟 | 较高(受网络影响) | 较低(进程内通信) |

| 客户端数量 | 支持多客户端 | 通常单一客户端 |

| 部署复杂性 | 需要配置HTTP端点 | 简单,无需特殊配置 |

| 安全性考虑 | 需要考虑HTTP安全性 | 主要关注进程安全性 |

| 集成方式 | 远程服务集成 | 本地工具集成 |

| 扩展性 | 高(可以横向扩展) | 低(受限于本地资源) |

| 适用环境 | 分布式系统、微服务 | 本地应用、命令行工具 |

在Spring AI MCP中,可以根据应用需求选择适合的传输机制。对于需要远程访问的服务,SSE是更好的选择;而对于本地集成和低延迟要求的场景,stdio则更为合适。

四、Spring AI MCP实现示例

下面我们将通过实际代码示例,分别展示如何使用Spring AI MCP实现SSE和stdio两种传输方式。

4.1 环境准备

首先,我们需要添加Spring AI MCP相关依赖到项目中:

<!-- Spring Boot 依赖 -->
<parent>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-parent</artifactId>
    <version>3.2.0</version>
</parent>

<dependencies>
    <!-- Spring AI MCP 客户端核心依赖 -->
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-starter-mcp-client</artifactId>
        <version>1.0.0</version>
    </dependency>
    
    <!-- WebFlux SSE传输实现(可选) -->
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-starter-mcp-client-webflux</artifactId>
        <version>1.0.0</version>
    </dependency>
    
    <!-- Spring Boot Web(用于SSE实现) -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    
    <!-- Spring Boot WebFlux(用于WebFlux SSE实现) -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-webflux</artifactId>
    </dependency>
</dependencies>

4.2 SSE实现示例

4.2.1 配置SSE客户端

application.yml中配置SSE客户端:

spring:
  ai:
    mcp:
      client:
        enabled: true
        name: mcp-sse-client
        version: 1.0.0
        request-timeout: 30s
        type: SYNC  # 同步客户端,也可以设为ASYNC使用异步客户端
        sse:
          connections:
            server1:
              url: http://localhost:8080/mcp/message
4.2.2 SSE客户端实现
import org.springframework.ai.mcp.client.McpSyncClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.List;
import java.util.Map;

@SpringBootApplication
public class SseClientApplication {

    public static void main(String[] args) {
        SpringApplication.run(SseClientApplication.class, args);
    }

    @Autowired
    private List<McpSyncClient> mcpSyncClients;

    @Bean
    public CommandLineRunner runner() {
        return args -> {
            // 假设我们只有一个客户端配置
            McpSyncClient client = mcpSyncClients.get(0);
            
            // 初始化客户端连接
            client.initialize();
            
            // 列出可用工具
            var tools = client.listTools();
            System.out.println("可用工具: " + tools.getTools());
            
            // 调用一个名为"calculator"的工具
            var result = client.callTool(
                new CallToolRequest("calculator", 
                    Map.of("operation", "add", "a", 2, "b", 3))
            );
            System.out.println("计算结果: " + result.getResult());
            
            // 列出可用资源
            var resources = client.listResources();
            System.out.println("可用资源: " + resources.getResources());
            
            // 关闭客户端
            client.closeGracefully();
        };
    }
}
4.2.3 SSE服务端实现
import org.springframework.ai.mcp.schema.Tool;
import org.springframework.ai.mcp.server.McpServer;
import org.springframework.ai.mcp.server.McpSyncServer;
import org.springframework.ai.mcp.server.feature.McpServerFeatures;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;

import java.util.Map;

@SpringBootApplication
@EnableWebMvc
public class SseServerApplication {

    public static void main(String[] args) {
        SpringApplication.run(SseServerApplication.class, args);
    }

    @Bean
    public WebMvcSseServerTransport webMvcSseServerTransport(ObjectMapper mapper) {
        return new WebMvcSseServerTransport(mapper, "/mcp/message");
    }

    @Bean
    public RouterFunction<ServerResponse> mcpRouterFunction(WebMvcSseServerTransport transport) {
        return transport.getRouterFunction();
    }

    @Bean
    public McpSyncServer mcpSyncServer(WebMvcSseServerTransport transport) {
        // 创建一个简单的计算器工具
        var calculatorTool = new Tool(
            "calculator", 
            "基础计算器", 
            Map.of(
                "operation", "string",
                "a", "number",
                "b", "number"
            )
        );
        
        // 工具处理函数
        var calculatorHandler = (Map<String, Object> args) -> {
            String operation = (String) args.get("operation");
            Number a = (Number) args.get("a");
            Number b = (Number) args.get("b");
            
            double result = 0;
            switch (operation) {
                case "add":
                    result = a.doubleValue() + b.doubleValue();
                    break;
                case "subtract":
                    result = a.doubleValue() - b.doubleValue();
                    break;
                case "multiply":
                    result = a.doubleValue() * b.doubleValue();
                    break;
                case "divide":
                    result = a.doubleValue() / b.doubleValue();
                    break;
            }
            
            return new CallToolResult(result, false);
        };
        
        // 创建和配置服务器
        return McpServer.sync(transport)
            .serverInfo("calculator-server", "1.0.0")
            .capabilities(ServerCapabilities.builder()
                .tools(true)  // 启用工具支持
                .logging()    // 启用日志支持
                .build())
            .tools(new McpServerFeatures.SyncToolRegistration(calculatorTool, calculatorHandler))
            .build();
    }
}

4.3 stdio实现示例

4.3.1 配置stdio客户端

application.yml中配置stdio客户端:

spring:
  ai:
    mcp:
      client:
        enabled: true
        name: mcp-stdio-client
        version: 1.0.0
        request-timeout: 30s
        type: SYNC
        stdio:
          connections:
            calculatorServer:
              command: java
              args:
                - -jar
                - calculator-server.jar
              env:
                DEBUG: "true"

也可以使用Claude Desktop格式的JSON配置文件:

spring:
  ai:
    mcp:
      client:
        stdio:
          servers-configuration: classpath:mcp-servers.json

mcp-servers.json示例:

{
  "mcpServers": {
    "calculator": {
      "command": "java",
      "args": [
        "-jar",
        "calculator-server.jar"
      ],
      "env": {
        "DEBUG": "true"
      }
    }
  }
}
4.3.2 stdio客户端实现
import org.springframework.ai.mcp.client.McpSyncClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.List;
import java.util.Map;

@SpringBootApplication
public class StdioClientApplication {

    public static void main(String[] args) {
        SpringApplication.run(StdioClientApplication.class, args);
    }

    @Autowired
    private List<McpSyncClient> mcpSyncClients;

    @Bean
    public CommandLineRunner runner() {
        return args -> {
            // 获取名为"calculatorServer"的客户端
            McpSyncClient client = mcpSyncClients.stream()
                .filter(c -> c.getName().equals("calculatorServer"))
                .findFirst()
                .orElseThrow(() -> new RuntimeException("未找到calculatorServer客户端"));
            
            // 初始化客户端连接
            client.initialize();
            
            // 列出可用工具
            var tools = client.listTools();
            System.out.println("可用工具: " + tools.getTools());
            
            // 调用计算器工具
            var result = client.callTool(
                new CallToolRequest("calculator", 
                    Map.of("operation", "multiply", "a", 10, "b", 5))
            );
            System.out.println("计算结果: " + result.getResult()); // 应该输出50
            
            // 关闭客户端
            client.closeGracefully();
        };
    }
}
4.3.3 stdio服务端实现

standalone-calculator-server.jar的主类:

import org.springframework.ai.mcp.schema.Tool;
import org.springframework.ai.mcp.server.McpServer;
import org.springframework.ai.mcp.server.McpSyncServer;
import org.springframework.ai.mcp.server.feature.McpServerFeatures;
import org.springframework.ai.mcp.transport.StdioServerTransport;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.Map;

@SpringBootApplication
public class StdioServerApplication {

    public static void main(String[] args) {
        SpringApplication.run(StdioServerApplication.class, args);
    }

    @Bean
    public CommandLineRunner runServer() {
        return args -> {
            // 创建stdio传输
            StdioServerTransport transport = new StdioServerTransport(new ObjectMapper());
            
            // 创建计算器工具
            var calculatorTool = new Tool(
                "calculator", 
                "基础计算器", 
                Map.of(
                    "operation", "string",
                    "a", "number",
                    "b", "number"
                )
            );
            
            // 工具处理函数
            var calculatorHandler = (Map<String, Object> args) -> {
                String operation = (String) args.get("operation");
                Number a = (Number) args.get("a");
                Number b = (Number) args.get("b");
                
                double result = 0;
                switch (operation) {
                    case "add":
                        result = a.doubleValue() + b.doubleValue();
                        break;
                    case "subtract":
                        result = a.doubleValue() - b.doubleValue();
                        break;
                    case "multiply":
                        result = a.doubleValue() * b.doubleValue();
                        break;
                    case "divide":
                        result = a.doubleValue() / b.doubleValue();
                        break;
                }
                
                return new CallToolResult(result, false);
            };
            
            // 创建和配置服务器
            McpSyncServer server = McpServer.sync(transport)
                .serverInfo("calculator-server", "1.0.0")
                .capabilities(ServerCapabilities.builder()
                    .tools(true)
                    .logging()
                    .build())
                .tools(new McpServerFeatures.SyncToolRegistration(calculatorTool, calculatorHandler))
                .build();
            
            // 服务器将通过stdio与客户端通信,直到进程终止
            System.out.println("计算器服务器已启动,等待通过stdio接收命令...");
        };
    }
}

4.4 客户端自定义配置

可以通过实现McpSyncClientCustomizerMcpAsyncClientCustomizer接口来自定义客户端行为:

import org.springframework.ai.mcp.client.customizer.McpSyncClientCustomizer;
import org.springframework.ai.mcp.client.McpClient;
import org.springframework.stereotype.Component;

import java.time.Duration;
import java.util.List;

@Component
public class CustomMcpClientConfig implements McpSyncClientCustomizer {
    
    @Override
    public void customize(String serverConfigurationName, McpClient.SyncSpec spec) {
        // 自定义请求超时时间
        spec.requestTimeout(Duration.ofSeconds(30));
        
        // 设置工具变更通知处理器
        spec.toolsChangeConsumer((List<McpSchema.Tool> tools) -> {
            System.out.println("工具列表已更新: " + tools);
        });
        
        // 设置日志处理器
        spec.loggingConsumer((McpSchema.LoggingMessageNotification log) -> {
            System.out.println("[" + log.getLevel() + "] " + log.getData());
        });
    }
}

4.5 完整的异步WebFlux示例

下面是一个使用WebFlux实现的异步MCP客户端和服务器的完整示例:

4.5.1 异步WebFlux客户端
import org.springframework.ai.mcp.client.McpAsyncClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import reactor.core.publisher.Mono;

import java.util.List;
import java.util.Map;

@SpringBootApplication
public class AsyncWebFluxClientApplication {

    public static void main(String[] args) {
        SpringApplication.run(AsyncWebFluxClientApplication.class, args);
    }

    @Autowired
    private List<McpAsyncClient> mcpAsyncClients;

    @Bean
    public CommandLineRunner runner() {
        return args -> {
            // 获取第一个客户端
            McpAsyncClient client = mcpAsyncClients.get(0);
            
            // 使用响应式编程方式与MCP服务器交互
            client.initialize()
                .flatMap(initResult -> {
                    System.out.println("客户端初始化成功");
                    return client.listTools();
                })
                .flatMap(tools -> {
                    System.out.println("可用工具: " + tools.getTools());
                    // 调用计算器工具
                    return client.callTool(new CallToolRequest(
                        "calculator",
                        Map.of("operation", "add", "a", 5, "b", 3)
                    ));
                })
                .flatMap(result -> {
                    System.out.println("计算结果: " + result.getResult());
                    return Mono.just("完成");
                })
                .doFinally(signalType -> {
                    // 关闭客户端
                    client.closeGracefully().subscribe();
                })
                .subscribe();
        };
    }
}

配置文件 application.yml:

spring:
  ai:
    mcp:
      client:
        enabled: true
        name: webflux-mcp-client
        version: 1.0.0
        request-timeout: 30s
        type: ASYNC  # 异步客户端
        sse:
          connections:
            webfluxServer:
              url: http://localhost:8080/mcp/message
4.5.2 异步WebFlux服务器
import org.springframework.ai.mcp.schema.Tool;
import org.springframework.ai.mcp.server.McpAsyncServer;
import org.springframework.ai.mcp.server.McpServer;
import org.springframework.ai.mcp.server.feature.McpServerFeatures;
import org.springframework.ai.mcp.transport.webflux.WebFluxSseServerTransport;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.web.reactive.function.server.RouterFunction;
import reactor.core.publisher.Mono;

import java.util.Map;

@SpringBootApplication
public class AsyncWebFluxServerApplication {

    public static void main(String[] args) {
        SpringApplication.run(AsyncWebFluxServerApplication.class, args);
    }

    @Bean
    public WebFluxSseServerTransport webFluxSseServerTransport(ObjectMapper mapper) {
        return new WebFluxSseServerTransport(mapper, "/mcp/message");
    }

    @Bean
    public RouterFunction<?> mcpRouterFunction(WebFluxSseServerTransport transport) {
        return transport.getRouterFunction();
    }

    @Bean
    public McpAsyncServer mcpAsyncServer(WebFluxSseServerTransport transport) {
        // 创建计算器工具
        var calculatorTool = new Tool(
            "calculator", 
            "基础计算器", 
            Map.of(
                "operation", "string",
                "a", "number",
                "b", "number"
            )
        );
        
        // 异步工具处理函数
        var calculatorHandler = (Map<String, Object> args) -> {
            String operation = (String) args.get("operation");
            Number a = (Number) args.get("a");
            Number b = (Number) args.get("b");
            
            double result = 0;
            switch (operation) {
                case "add":
                    result = a.doubleValue() + b.doubleValue();
                    break;
                case "subtract":
                    result = a.doubleValue() - b.doubleValue();
                    break;
                case "multiply":
                    result = a.doubleValue() * b.doubleValue();
                    break;
                case "divide":
                    result = a.doubleValue() / b.doubleValue();
                    break;
            }
            
            // 使用Mono包装结果
            return Mono.just(new CallToolResult(result, false));
        };
        
        // 创建和配置异步服务器
        return McpServer.async(transport)
            .serverInfo("calculator-server", "1.0.0")
            .capabilities(ServerCapabilities.builder()
                .tools(true)
                .logging()
                .build())
            .tools(new McpServerFeatures.AsyncToolRegistration(calculatorTool, calculatorHandler))
            .build();
    }
}

五、最佳实践与建议

在使用Spring AI MCP进行开发时,以下是一些最佳实践和建议:

5.1 选择合适的传输机制

  • 如果应用需要远程访问或分布式架构,选择SSE传输
  • 对于本地集成和低延迟要求,选择stdio传输
  • 使用WebFlux实现可以提供更好的可扩展性和响应式编程模型

5.2 客户端配置建议

  • 合理设置请求超时时间,避免长时间阻塞
  • 使用客户端自定义器(Customizer)根据需求调整客户端行为
  • 为生产环境推荐使用WebFlux-based SSE实现
  • 使用异步客户端处理高并发场景

5.3 服务端设计考虑

  • 工具设计应该简单明确,便于AI模型理解和使用
  • 提供详细的工具描述和参数说明
  • 实现适当的错误处理机制,返回有意义的错误信息
  • 使用结构化日志记录系统状态和调试信息

5.4 安全性考虑

  • 限制文件系统访问范围,仅公开必要的根目录
  • 对敏感操作实施适当的权限检查
  • 使用HTTPS保护SSE通信
  • 记录和监控工具调用,防止异常使用

5.5 性能优化

  • 对频繁使用的工具进行缓存
  • 使用异步API处理长时间运行的操作
  • 合理设置连接池大小(对于SSE实现)
  • 考虑使用WebFlux实现提高吞吐量

六、总结

Spring AI MCP为开发者提供了一个强大的框架,用于构建与AI模型交互的应用。通过标准化的协议和灵活的传输机制,它简化了AI能力的集成过程。本文详细介绍了MCP的核心概念、Spring AI的主要特点,以及SSE和stdio两种传输机制的区别和实现。通过具体的代码示例,展示了如何使用Spring AI MCP构建同步和异步客户端/服务器应用。

随着AI技术的不断发展,MCP将在连接AI模型与外部世界方面发挥越来越重要的作用。Spring AI MCP作为Java生态系统中的重要工具,为开发者提供了便捷的方式来构建智能化应用,实现AI能力的无缝集成。

通过合理选择传输机制和遵循最佳实践,开发者可以充分发挥Spring AI MCP的潜力,构建功能强大、性能卓越的AI增强型应用。

<think>好的,我需要帮助用户了解SpringAI MCP的配置和解决方案。根据用户提供的引用内容,我需要整理相关信息,确保回答符合格式要求,包括使用中文、正确的LaTeX格式以及生成相关问题。首先,用户提到的引用[1]是关于Maven依赖的配置,引用[2]提到了三种MCP Server的依赖类型和配置信息,引用[3]则讨论了集成后的应用场景和未来趋势。 我需要先整理配置部分,可能包括客户端和服务端的依赖配置,以及配置文件如application.properties的设置。然后,解决方案部分可能需要涉及架构设计和集成步骤。要注意引用标注的正确位置,比如在提到依赖时添加[^1],在说明服务端类型时引用[^2],在讨论应用场景时引用[^3]。 接下来,我需要确保使用正确的LaTeX格式。例如,数学公式用$...$,独立公式用$$...$$。虽然当前内容可能不涉及复杂数学,但如果有提到版本号或其他需要强调的内容,可能需要调整。例如,版本号如Spring Boot 3.1.0可以写成$3.1.0$,但可能并不必要,这里需要根据用户的要求判断。 然后生成相关问题,需确保问题SpringAI MCP相关,可能涉及配置细节、优化方法、应用场景比较、异常处理等。需要参考用户之前的示例,保持问题简洁且相关。 最后,检查回答结构是否清晰,分步骤说明配置和解决方案,引用正确,语言自然。避免使用Markdown格式,但用户给出的示例中使用了代码块,所以需要保留Python代码示例,如果有的话。不过当前主题是Spring配置,可能更多是Java代码或配置文件示例,需要根据引用内容调整。 现在,开始组织内容:首先介绍MCP的基本配置,包括客户端和服务端的依赖,然后讲解配置文件中的关键参数,接着是解决方案的架构设计和集成步骤。最后生成相关问题。</think>### SpringAI MCP 配置解决方案 #### 一、基础配置 1. **客户端依赖配置** 在项目中添加MCP客户端的Spring Boot Starter依赖: ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-mcp-client-spring-boot-starter</artifactId> </dependency> ``` 通过该依赖可快速接入MCP服务[^1]。 2. **服务端依赖类型** MCP Server支持三种通信模式: - **标准输入/输出(STDIO)**:`spring-ai-starter-mcp-server` - **Spring MVC(SSE)**:`spring-ai-starter-mcp-server-webmvc` - **响应式SSE(WebFlux)**:`spring-ai-starter-mcp-server-webflux` 根据项目技术栈选择对应依赖[^2]。 3. **配置文件示例** 在`application.properties`中设置MCP服务端地址和通信协议: ```properties spring.ai.mcp.server.url=http://localhost:8080/mcp spring.ai.mcp.protocol=sse # 可选stdio/sse/webflux ``` #### 二、解决方案设计 1. **架构设计** - **Client-Server模型**:客户端通过HTTP/SSEMCP服务端交互,服务端处理AI模型推理请求。 - **协议适配**:根据场景选择低延迟(SSE)或高吞吐(WebFlux)协议[^2]。 - **服务发现**:结合Spring Cloud实现动态服务注册负载均衡。 2. **集成步骤** ```java @RestController public class McpController { @Autowired private McpClient mcpClient; @PostMapping("/predict") public ResponseEntity<String> predict(@RequestBody String input) { String response = mcpClient.sendRequest(input); return ResponseEntity.ok(response); } } ``` 3. **高级配置** - **超时控制**: ```properties spring.ai.mcp.timeout=5000 # 毫秒 ``` - **重试机制**: ```properties spring.ai.mcp.retry.max-attempts=3 spring.ai.mcp.retry.backoff=1000 ``` #### 三、应用场景优化 - **实时推荐系统**:通过SSE协议实现低延迟响应[^3]。 - **批量数据处理**:使用WebFlux提升并发性能[^2]。 - **异常处理**:结合Spring AOP统一捕获MCP通信异常。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值