python数据可视化-matplotlib之散点图sactter函数详解

本文转载自-【数字的可视化:python画图之散点图sactter函数详解】
感谢博主-hefei_cyp的博客

最近开始学习Python编程,遇到scatter函数,感觉里面的参数不知道什么意思于是查资料,最后总结如下:

1、scatter函数原型
1

2、其中散点的形状参数marker如下:

2

3、其中颜色参数c如下:

3

4、基本的使用方法如下:

#导入必要的模块  
import numpy as np  
import matplotlib.pyplot as plt  
#产生测试数据  
x = np.arange(1,10)  
y = x  
fig = plt.figure()  
ax1 = fig.add_subplot(111)  
#设置标题  
ax1.set_title('Scatter Plot')  
#设置X轴标签  
plt.xlabel('X')  
#设置Y轴标签  
plt.ylabel('Y')  
#画散点图  
ax1.scatter(x,y,c = 'r',marker = 'o')  
#设置图标  
plt.legend('x1')  
#显示所画的图  
plt.show()

结果
4

5、当scatter后面参数中数组的使用方法,如s,当s是同x大小的数组,表示x中的每个点对应s中一个大小,其他如c,等用法一样,如下:

(1)不同大小

#导入必要的模块  
import numpy as np  
import matplotlib.pyplot as plt  
#产生测试数据  
x = np.arange(1,10)  
y = x  
fig = plt.figure()  
ax1 = fig.add_subplot(111)  
#设置标题  
ax1.set_title('Scatter Plot')  
#设置X轴标签  
plt.xlabel('X')  
#设置Y轴标签  
plt.ylabel('Y')  
#画散点图  
sValue = x*10  
ax1.scatter(x,y,s=sValue,c='r',marker='x')  
#设置图标  
plt.legend('x1')  
#显示所画的图  
plt.show()  

结果
5

(2)不同颜色

#导入必要的模块  
import numpy as np  
import matplotlib.pyplot as plt  
#产生测试数据  
x = np.arange(1,10)  
y = x  
fig = plt.figure()  
ax1 = fig.add_subplot(111)  
#设置标题  
ax1.set_title('Scatter Plot')  
#设置X轴标签  
plt.xlabel('X')  
#设置Y轴标签  
plt.ylabel('Y')  
#画散点图  
cValue = ['r','y','g','b','r','y','g','b','r']  
ax1.scatter(x,y,c=cValue,marker='s')  
#设置图标  
plt.legend('x1')  
#显示所画的图  
plt.show()  

结果:
6

(3)线宽linewidths


#导入必要的模块  
import numpy as np  
import matplotlib.pyplot as plt  
#产生测试数据  
x = np.arange(1,10)  
y = x  
fig = plt.figure()  
ax1 = fig.add_subplot(111)  
#设置标题  
ax1.set_title('Scatter Plot')  
#设置X轴标签  
plt.xlabel('X')  
#设置Y轴标签  
plt.ylabel('Y')  
#画散点图  
lValue = x  
ax1.scatter(x,y,c='r',s= 100,linewidths=lValue,marker='o')  
#设置图标  
plt.legend('x1')  
#显示所画的图  
plt.show()  

结果
这里写图片描述

阅读更多
个人分类: Python Visualization
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭