两个重要极限定理推导

两个重要极限定理:
lim ⁡ x → 0 sin ⁡ x x = 1 (1) \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1 \tag{1} x0limxsinx=1(1)

lim ⁡ x → ∞ ( 1 + 1 x ) x = e (2) \lim_{x \rightarrow \infty} (1 + \frac{1}{x})^x = e \tag{2} xlim(1+x1)x=e(2)

引理(夹逼定理)

定义一:

如果数列 { X n } \lbrace X_n \rbrace {Xn} { Y n } \lbrace Y_n \rbrace {Yn} { Z n } \lbrace Z_n \rbrace {Zn} ,满足下列条件:

(1) 当 n > N 0 n > N_0 n>N0 时,其中 N 0 ∈ N ∗ N_0 \in N^* N0N ,有 Y n ≤ X n ≤ Z n Y_n \le X_n \le Z_n YnXnZn

(2) { Y n } \lbrace Y_n\rbrace {Yn} { Z n } \lbrace Z_n \rbrace {Zn} 有相同的极限 a a a,设 − ∞ < a < + ∞ - \infty < a < + \infty <a<+,则,数列 { X n } \lbrace X_n \rbrace {Xn} 的极限存在,且
lim ⁡ n → ∞ X n = a \lim_{n \rightarrow \infty} X_n = a nlimXn=a
定义二:

F ( x ) F(x) F(x) G ( x ) G(x) G(x) X 0 X_0 X0 连续且存在相同的极限 A A A,即 x → X 0 x \rightarrow X_0 xX0 时, lim ⁡ F ( x ) = lim ⁡ G ( x ) = A \lim F(x) = \lim G(x) = A limF(x)=limG(x)=A,则

若有函数在 f ( x ) f(x) f(x) X 0 X_0 X0 的某领域内恒有 F ( x ) ≤ f ( x ) ≤ G ( x ) F(x) \le f(x) \le G(x) F(x)f(x)G(x) ,则当 X X X 趋近 X 0 X_0 X0, 有
lim ⁡ F ( x ) ≤ lim ⁡ f ( x ) ≤ l i m G ( x ) \lim F(x) \le \lim f(x) \le lim G(x) limF(x)limf(x)limG(x)

A ≤ l i m f ( x ) ≤ A A \le lim f(x) \le A Alimf(x)A

lim ⁡ ( X 0 ) = A \lim(X_0) = A lim(X0)=A
简单地说:函数 A > B A>B A>B,函数 B > C B>C B>C,函数 A A A的极限是 X X X,函数 C C C 的极限也是 X X X ,那么函数 B B B 的极限就一定是 X X X,这个就是夹逼定理。

定理 1 证明:

在这里插入图片描述

如上图,对于弧 A C ⌢ \mathop{AC}\limits^{\frown} AC ,由于半径 1 1 1,所以,弧 A C ⌢ \mathop{AC}\limits^{\frown} AC x x x。图片很直观地看出 sin ⁡ x ≤ x ≤ tan ⁡ x \sin x \le x \le \tan x sinxxtanx,并在 x → 0 x \rightarrow 0 x0的时候,他们都"相等"。这个是几何直观的,如果我们假设化曲为直是可行的。

所以,

由上述公式,
sin ⁡ x ≤ x ≤ t a n x    ⟺    1 ≤ x sin ⁡ x ≤ tan ⁡ x sin ⁡ x    ⟺    1 ≤ x sin ⁡ x ≤ 1 cos ⁡ x \sin x \le x \le tan x \iff 1 \le \frac{x}{\sin x} \le \frac{\tan x}{\sin x} \iff 1 \le \frac{x}{\sin x} \le \frac{1}{\cos x} sinxxtanx1sinxxsinxtanx1sinxxcosx1
由上式取倒数得:
cos ⁡ x ≤ sin ⁡ x x ≤ 1 \cos x \le \frac{\sin x}{x} \le 1 cosxxsinx1
因为,
lim ⁡ x → 0 cos ⁡ x = 1 \lim_{x \rightarrow 0} \cos x = 1 x0limcosx=1
所以,
lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1 x0limxsinx=1
定理 1,得证。

定理2,证明:

首先,证明此极限存在;

构造数列
x n = ( 1 + 1 n ) n x_n = (1 + \frac{1}{n})^n xn=(1+n1)n
根据二项式定理,进行展开:
x n = C n 0 1 n ( 1 n ) 0 + C n 1 1 n − 1 ( 1 n ) 1 + C n 2 1 n − 2 ( 1 n ) 2 + ⋯ + n ( n − 1 ) ( n − 2 ) ⋯ 1 n ! 1 0 ( 1 n ) n = 1 + 1 + 1 2 ! ( 1 − 1 n ) + 1 3 ! ( 1 − 1 n ) ( 1 − 2 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) < 2 + 1 2 ! + 1 3 ! + ⋯ 1 n ! < 2 + 1 2 + 1 2 2 + 1 2 3 + ⋯ + 1 2 n − 1 = 3 − 1 2 n − 1 < 3 x_n = C_n^01^n(\frac{1}{n})^0 + C_n^11^{n-1}({\frac{1}{n}})^1 + C_n^21^{n-2}({\frac{1}{n}})^2 + \cdots + \frac{n(n-1)(n-2)\cdots1}{n!}1^0(\frac{1}{n})^n \\ = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n}) + \cdots + \frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{n-1}{n}) \\ < 2 + \frac{1}{2!} +\frac{1}{3!} + \cdots \frac{1}{n!} \\ < 2 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots + \frac{1}{2^{n-1}} = 3 - \frac{1}{2^{n-1}} < 3 xn=Cn01n(n1)0+Cn11n1(n1)1+Cn21n2(n1)2++n!n(n1)(n2)110(n1)n=1+1+2!1(1n1)+3!1(1n1)(1n2)++n!1(1n1)(1n2)(1nn1)<2+2!1+3!1+n!1<2+21+221+231++2n11=32n11<3
而对于
x n + 1 = ( 1 + 1 n + 1 ) n + 1 = 2 + 1 2 ! ( 1 − 1 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) + 1 ( n + 1 ) ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ) ⋯ ( 1 − n n + 1 ) x_{n+1} = (1 + \frac{1}{n+1})^{n+1} \\ = 2 + \frac{1}{2!}(1 - \frac{1}{n}) + \cdots + \frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{n-1}{n}) + \frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1}))\cdots(1- \frac{n}{n+1}) xn+1=(1+n+11)n+1=2+2!1(1n1)++n!1(1n1)(1n2)(1nn1)+(n+1)!1(1n+11)(1n+12))(1n+1n)
所以
x n + 1 − x n = 1 ( n + 1 ) ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ) ⋯ ( 1 − n n + 1 ) > 0 x_{n+1}-x_n = \frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1}))\cdots(1- \frac{n}{n+1}) > 0 xn+1xn=(n+1)!1(1n+11)(1n+12))(1n+1n)>0
故,
x n + 1 > x n x_{n+1} > x_n xn+1>xn
该序列为单调递增序列,存在极限,记此极限为 e e e

对于实数 x x x,则总存在整数 n n n,使得 n ≤ x ≤ n + 1 n \le x \le n+1 nxn+1,则有
( 1 + 1 n + 1 ) n < ( 1 + 1 x ) x < ( 1 + 1 n ) n + 1 (1+\frac{1}{n+1})^n < (1+\frac{1}{x})^x<(1+\frac{1}{n})^{n+1} (1+n+11)n<(1+x1)x<(1+n1)n+1

lim ⁡ n → ∞ ( 1 + 1 n + 1 ) n = lim ⁡ n → ∞ ( 1 + 1 n + 1 ) 1 + 1 n + 1 = lim ⁡ n → ∞ ( 1 + 1 n + 1 ) n + 1 lim ⁡ n → ∞ ( 1 + 1 n + 1 ) = e 1 = e \lim_{n \rightarrow \infty}(1+\frac{1}{n+1})^n = \lim_{n \rightarrow \infty}\frac{(1+\frac{1}{n+1})}{1 + \frac{1}{n+1}} = \frac{\lim_{n \rightarrow \infty}(1+\frac{1}{n+1})^{n+1}}{\lim_{n \rightarrow \infty}(1 + \frac{1}{n+1})} = \frac{e}{1} = e nlim(1+n+11)n=nlim1+n+11(1+n+11)=limn(1+n+11)limn(1+n+11)n+1=1e=e

同理,
lim ⁡ n → ∞ ( 1 + 1 n ) n + 1 = lim ⁡ n → ∞ ( 1 + 1 n ) ( 1 + 1 n ) n = lim ⁡ n → ∞ ( 1 + 1 n ) lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim_{n \rightarrow \infty}(1+\frac{1}{n})^{n+1} = \lim_{n \rightarrow \infty}(1 + \frac{1}{n})(1 + \frac{1}{n})^n = \lim_{n \rightarrow \infty}(1 + \frac{1}{n})\lim_{n \rightarrow \infty}(1 + \frac{1}{n})^n = e nlim(1+n1)n+1=nlim(1+n1)(1+n1)n=nlim(1+n1)nlim(1+n1)n=e

故,根据夹逼定理,函数 f ( x ) = lim ⁡ n → ∞ f r a c ( 1 + 1 x ) x f(x) = \lim_{n \rightarrow \infty}frac(1 + \frac{1}{x})^x f(x)=limnfrac(1+x1)x 的极限存在,为 e e e

  • 24
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
初值定理和终值定理都是微积分中的基本定理,它们是解决微积分问题的重要方法。 初值定理:设函数f(x)在区间[a,b]上连续,x0∈[a,b],则有:$$ \lim_{x \to x_0}f(x)=f(x_0) $$ 这个定理告诉我们,在一个区间上,如果一个函数在某一点x0处连续,那么在x0点的极限值等于函数在x0点的函数值f(x0)。 终值定理:设函数f(x)在区间[a,b]上连续,且在(a,b)内具有导数,则有:$$ \int_a^bf'(x)dx=f(b)-f(a) $$ 这个定理告诉我们,如果一个函数在某个区间上具有导数,那么在该区间上的积分等于函数在该区间的两个端点处的函数值之差。 现在我们来推导一下终值定理: 设F(x)是f(x)在区间[a,x]上的一个原函数,则有: $$ \frac{d}{dx}F(x)=f(x) $$ 对两边同时积分: $$ \int_a^b\frac{d}{dx}F(x)dx=\int_a^bf(x)dx $$ 根据牛顿-莱布尼茨公式,上式左边等于F(b)-F(a),即: $$ \int_a^bf(x)dx=F(b)-F(a) $$ 所以终值定理得证。 初值定理推导可以利用终值定理推出,具体过程如下: 设F(x)是f(x)在区间[a,x]上的一个原函数,则有: $$ \frac{d}{dx}F(x)=f(x) $$ 对两边同时积分得到: $$ F(x)-F(x_0)=\int_{x_0}^xf(t)dt $$ 当x趋近于x0时,有: $$ \lim_{x \to x_0}(F(x)-F(x_0))=\lim_{x \to x_0}\int_{x_0}^xf(t)dt $$ 根据终值定理: $$ \lim_{x \to x_0}\int_{x_0}^xf(t)dt=f(x_0)-f(x_0)=0 $$ 所以有: $$ \lim_{x \to x_0}(F(x)-F(x_0))=0 $$ 即: $$ \lim_{x \to x_0}F(x)=F(x_0) $$ 因为F(x)是f(x)在区间[a,x]上的一个原函数,所以: $$ \lim_{x \to x_0}F(x)=\lim_{x \to x_0}\int_a^xf(t)dt $$ 根据极限的唯一性,可得: $$ \lim_{x \to x_0}\int_a^xf(t)dt=\int_a^{x_0}f(t)dt $$ 所以初值定理得证。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值