深度学习
lingtianyulong
这个作者很懒,什么都没留下…
展开
-
Tensorflow 2.1.0 安装的坑
1:Tensorflow 2.1.0开始,默认下载的是 GPU版本;2:安装完成后,会提示导入 dll文件失败,需要安装 VC_redist.x64.exe。原创 2020-02-07 11:57:22 · 16074 阅读 · 33 评论 -
Tensorflow 2.0 线性回归
import tensorflow as tfimport matplotlib.pyplot as pltprint(tf.keras.__version__)class Model(object): def __init__(self): self.W = tf.Variable(5.0) self.b = tf.Variable(0.0)...原创 2020-02-04 18:50:44 · 319 阅读 · 0 评论 -
tensorflow训练自己的数据集实现CNN图像分类1
tensorflow训练自己的数据集实现CNN图像分类1利用卷积神经网络训练图像数据分为以下几个步骤读取图片文件产生用于训练的批次定义训练的模型(包括初始化参数,卷积、池化层等参数、网络)训练1 读取图片文件 1 def get_files(filename): 2 class_train = [] 3 label_train = [] 4 for train_cla...转载 2018-05-29 13:28:42 · 8470 阅读 · 2 评论 -
TensorFlow 训练大规模数据
声明:本文为本人在学习过程中,遇到的问题进行整理,若有不正确之处,还请大牛不吝赐教。本文就 TensorFlow 构建卷积网络后,对大规模数据的训练方法进行整理。众所周知,在训练卷积网络模型的过程中,为了保证模型的准确率,大量的数据是必须的。TensorFlow 中也提供了几种数据加载的方式,最简单最暴力的方式便是将所有的数据一次性加载到内存中进行训练,但如果数据量过大,以CoCo数据集为例,有将...原创 2018-06-03 13:47:53 · 7627 阅读 · 6 评论 -
四大经典CNN网络技术原理
AlexNet VGGNet Google Inception Net ResNet这4种网络依照出现的先后顺序排列,深度和复杂度也依次递进。它们分别获得了ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛分类项目的2012年冠军(top-5错误率16.4%,使用额外数据可达到15.3%,8层神经网络)、2014年亚军(top-5...转载 2018-04-19 15:39:19 · 565 阅读 · 0 评论 -
Win10 下 tensorboard 无法显示的解决方法
在使用TensorBoard 的过程中,遇到了 Chrome中无法显示的情况,该问题的解决方法如下所述:可以将生成的Log文件,复制到 TensorBoard的安装文件下运行,以本人电脑路径为例,D:\Program Files\Python\Scripts但每次都需要复制,过程过于麻烦,可将该路径加入的系统的环境变量中即可;将 TensorBoard 路径添加到环境变量中,启动Chrome 然后...原创 2018-04-02 15:52:27 · 2700 阅读 · 1 评论 -
基于 CNN 的字符识别
本文声明:本文只本人在学习过程中的练习,如有错误之处,欢迎大家不吝赐教在学习过程中,对标准的打印字符构建模型,并进行训练,字符样本如下图所示:模型中共用了 3层卷积和2个全连接层,其中,第1层卷积核大小为 3*3,输入图像为单通道灰度图像,输出特征为 64个特征,第2层卷积核大小为5*5,输出特征为32个特征,第3层卷积核大小为5*5,输出特征为 16个特征,将 16个特...原创 2019-12-11 17:48:49 · 6579 阅读 · 1 评论 -
TensorFlow 机器学实战指南示例代码之 TensorFlow 实现随机训练和批量训练
"""批量训练"""import osimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2's = tf.Session()# 声明批量训练的数据量的大小batch_size = 20# 声明模型的数原创 2018-02-07 14:26:23 · 347 阅读 · 0 评论 -
TensorFlow 机器学实战指南示例代码之 TensorFlow 实现反向传播(二)
"""二值分类,TensorFlow 示例"""import osimport tensorflow as tfimport numpy as npos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2's = tf.Session()# 从正态分布(N(-1, 1), N(3, 1)) 生成数据,同时生成目标标签,占位符和偏差变量 Ax_vals原创 2018-02-07 14:24:42 · 316 阅读 · 0 评论 -
TensorFlow 机器学实战指南示例代码之 TensorFlow 实现反向传播(一)
"""TensorFlow 通过优化函数来实现更新变量和最小化损失函数来实现误差的反向传播一旦声明优化函数后,TensorFlow 将通过它在所有的计算图中解决反向传播项"""# 该程序用于实现回归算法的反向传播import osimport numpy as npimport tensorflow as tfos.environ['TF_CPP_MIN_LOG_LEVEL']原创 2018-02-07 14:22:38 · 524 阅读 · 0 评论 -
TensorFlow 机器学实战指南示例代码之 TensorFlow 实现损失函数
回归算法的损失函数:"""回归算法的损失函数,并绘制"""import osimport matplotlib.pyplot as pltimport tensorflow as tfos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2's = tf.Session()# linspace 在 [start, stop] 范围内产生 num 个原创 2018-02-06 22:22:14 · 404 阅读 · 0 评论