问题 J: 小C的数学问题
时间限制: 1 Sec 内存限制: 128 MB
题目描述
小C是个云南中医学院的大一新生,在某个星期二,他的高数老师扔给了他一个问题。
让他在1天的时间内给出答案。
但是小C不会这问题,现在他来请教你。
请你帮他解决这个问题。
有n个数,每个数有权值。
数学老师定义了区间价值为区间和乘上区间内的最小值。
现在要你找出有最大区间价值的区间是什么,并输出区间价值。
输入
每个输入文件只包含单组数据。
第一行一个整数n。(1 <= n <= 100000)
第二行n个整数a_1,a_2,...,a_n。(0 <= a_i <= 1000000)
输出
第一行输出一个整数,表示最大的区间价值。
第二行输出两个整数,表示区间的起点和终点。
保证答案唯一。
样例输入
6 10 1 9 4 5 9
样例输出
108 3 6
这题和poj2796一模一样,这题有两种解法,一种是单调栈,和紫书上的例题差不多,就是宽度从1变成了x,多维护一维就可以。另一种是线段树+分治,在现在的区间内有三种选法,一种是当前区间,一种是当前区间最小值左边的区间,一种是当前区间最小值右边的区间,每次取个max就行。
然后有个坑,如果把ans和左右区间都初始化成0的话会挂,,,因为数据有1 0这种坑,,,我踩了两天的坑,,
先奉上单调栈做法
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
typedef long long ll;
int z[maxn],w[maxn],s[maxn];
int n,ansl,ansr,p;
ll ans,pre[maxn];
int main()
{
ansl = ansr = 1;
scanf("%d", &n);
for (int i = 1; i <= n; ++i)
scanf("%d", &z[i]);
for (int i = 1; i <= n; ++i)
pre[i] = pre[i - 1] + z[i];
for (int i = 1; i <= n + 1; ++i)
{
if (z[i] > z[s[p]])
{
s[++p] = i;
w[p] = 1;
} else
{
int ww = 0;
while (z[s[p]] > z[i])
{
ww += w[p];
int r = i - 1;
int l = i - ww;
if ((pre[r] - pre[s[p] - w[p]]) * z[s[p]] > ans)
{
ans = (pre[r] - pre[s[p] - w[p]]) * z[s[p]];
ansr = r;
ansl = l;
}
--p;
}
s[++p] = i;
w[p] = ww + 1;
}
}
printf("%lld\n%d %d\n", ans, ansl, ansr);
return 0;
}
再奉上线段树分治做法
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
typedef long long ll;
const int inf = 0x3f3f3f3f;
int n,ansl,ansr;
ll ans,pre[maxn],z[maxn];
struct fun
{
ll v;
int p;
};
fun minn[maxn * 4];
void build(int l, int r, int rt)
{
if (l == r)
{
minn[rt].v = z[l];
minn[rt].p = l;
return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, (rt << 1) + 1);
if (minn[rt << 1].v < minn[(rt << 1) + 1].v)
minn[rt] = minn[rt << 1];
else
minn[rt] = minn[(rt << 1) + 1];
}
fun query(int l, int r, int rt, int l1, int r1)
{
if (l1 <= l && r1 >= r)
return minn[rt];
int mid = (l + r) >> 1;
fun ret1,ret2;
if (r1 > mid && l1 <= mid)
{
ret1 = query(mid + 1, r, (rt << 1) + 1, l1, r1);
ret2 = query(l, mid, rt << 1, l1, r1);
if (ret1.v < ret2.v)
return ret1;
else
return ret2;
}
if (l1 > mid)
return query(mid + 1, r, (rt << 1) + 1, l1, r1);
if (r1 <= mid)
return query(l, mid, rt << 1, l1, r1);
}
void que(int l, int r)
{
if (l > r)
return;
if (l == r)
{
if (z[l] * z[l] > ans)
{
ans = z[l] * z[l];
ansl = ansr = l;
}
return;
}
fun t = query(1, n, 1, l, r);
if ((pre[r] - pre[l - 1]) * t.v > ans)
{
ans = (pre[r] - pre[l - 1]) * t.v;
ansl = l;
ansr = r;
}
que(l, t.p - 1);
que(t.p + 1, r);
}
int main()
{
// freopen("in.txt", "r", stdin);
ansl = ansr = 1;
scanf("%d", &n);
for (int i = 1; i <= n; ++i)
scanf("%lld", &z[i]);
for (int i = 1; i <= n; ++i)
pre[i] = pre[i - 1] + z[i];
build(1, n , 1);
que(1, n);
printf("%lld\n%d %d\n", ans, ansl, ansr);
return 0;
}