POJ2796/小C的数学问题 单调栈/线段树+分治

问题 J: 小C的数学问题

时间限制: 1 Sec  内存限制: 128 MB

题目描述

小C是个云南中医学院的大一新生,在某个星期二,他的高数老师扔给了他一个问题。

让他在1天的时间内给出答案。

但是小C不会这问题,现在他来请教你。

请你帮他解决这个问题。

有n个数,每个数有权值。

数学老师定义了区间价值为区间和乘上区间内的最小值。

现在要你找出有最大区间价值的区间是什么,并输出区间价值。

 

输入

每个输入文件只包含单组数据。
第一行一个整数n。(1 <= n <= 100000)
第二行n个整数a_1,a_2,...,a_n。(0 <= a_i <= 1000000)

 

输出

第一行输出一个整数,表示最大的区间价值。
第二行输出两个整数,表示区间的起点和终点。
保证答案唯一。

 

样例输入

6
10 1 9 4 5 9

样例输出

108
3 6

这题和poj2796一模一样,这题有两种解法,一种是单调栈,和紫书上的例题差不多,就是宽度从1变成了x,多维护一维就可以。另一种是线段树+分治,在现在的区间内有三种选法,一种是当前区间,一种是当前区间最小值左边的区间,一种是当前区间最小值右边的区间,每次取个max就行。

然后有个坑,如果把ans和左右区间都初始化成0的话会挂,,,因为数据有1 0这种坑,,,我踩了两天的坑,,

先奉上单调栈做法

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
typedef long long ll;
int z[maxn],w[maxn],s[maxn];
int n,ansl,ansr,p;
ll ans,pre[maxn];
int main()
{
ansl = ansr = 1;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i)
        scanf("%d", &z[i]);
    for (int i = 1; i <= n; ++i)
        pre[i] = pre[i - 1] + z[i];
    for (int i = 1; i <= n + 1; ++i)
    {
        if (z[i] > z[s[p]])
        {
            s[++p] = i;
            w[p] = 1;
        } else
        {
            int ww = 0;
            while (z[s[p]] > z[i])
            {
                ww += w[p];
                int r = i - 1;
                int l = i - ww;
                if ((pre[r] - pre[s[p] - w[p]]) * z[s[p]] > ans)
                {
                    ans = (pre[r] - pre[s[p] - w[p]]) * z[s[p]];
                    ansr = r;
                    ansl = l;
                }
                --p;
            }
            s[++p] = i;
            w[p] = ww + 1;
        }
    }
    printf("%lld\n%d %d\n", ans, ansl, ansr);
    return 0;
}

 

再奉上线段树分治做法

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
typedef long long ll;
const int inf = 0x3f3f3f3f;
int n,ansl,ansr;
ll ans,pre[maxn],z[maxn];
struct fun
{
    ll v;
    int p;
};
fun minn[maxn * 4];
void build(int l, int r, int rt)
{
    if (l == r)
    {
        minn[rt].v = z[l];
        minn[rt].p = l;
        return;
    }
    int mid = (l + r) >> 1;
    build(l, mid, rt << 1);
    build(mid + 1, r, (rt << 1) + 1);
    if (minn[rt << 1].v < minn[(rt << 1) + 1].v)
        minn[rt] = minn[rt << 1];
    else
        minn[rt] = minn[(rt << 1) + 1];
}
fun query(int l, int r, int rt, int l1, int r1)
{
    if (l1 <= l && r1 >= r)
        return minn[rt];
    int mid = (l + r) >> 1;
    fun ret1,ret2;
    if (r1 > mid && l1 <= mid)
    {
        ret1 = query(mid + 1, r, (rt << 1) + 1, l1, r1);
        ret2 = query(l, mid, rt << 1, l1, r1);
        if (ret1.v < ret2.v)
            return ret1;
        else
            return ret2;
    }
    if (l1 > mid)
        return query(mid + 1, r, (rt << 1) + 1, l1, r1);
    if (r1 <= mid)
        return query(l, mid, rt << 1, l1, r1);
}
void que(int l, int r)
{
    if (l > r)
        return;
    if (l == r)
    {
        if (z[l] * z[l] > ans)
        {
            ans = z[l] * z[l];
            ansl = ansr = l;
        }
        return;
    }
    fun t = query(1, n, 1, l, r);
    if ((pre[r] - pre[l - 1]) * t.v > ans)
    {
        ans = (pre[r] - pre[l - 1]) * t.v;
        ansl = l;
        ansr = r;
    }
    que(l, t.p - 1);
    que(t.p + 1, r);
}
int main()
{
//    freopen("in.txt", "r", stdin);
    ansl = ansr = 1;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i)
        scanf("%lld", &z[i]);
    for (int i = 1; i <= n; ++i)
        pre[i] = pre[i - 1] + z[i];
    build(1, n , 1);
    que(1, n);
    printf("%lld\n%d %d\n", ans, ansl, ansr);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值