今天跑代码的时候遇到了这个错误:
RuntimeError: size mismatch, m1:[1152 x 1] ,m2:[576 x 192] ,at /opt/conda/conda-bld/pytorch_1524
调试之后发现是如下有问题:
源代码在这里:
这是class里init中相应的部分
def forward的相应的问题
问题就在于y1 = self.fc_1(y)这里,fc_1也是同fc一样的全连接层,而全连接层输入的尺寸只有两维!
从图上可以看到,y输出的尺寸是[2,576,1,1]
在y1 = self.fc_1(y)的时候,因为y是四维的,所以会自动变成两维的,具体怎么变呢就是:
假设y是[2,576,1,1],输入全连接层fc_1之后,pytorch会自动将[2,576,1,1]压成[2X576,1X1],这就是二维的了。
所以应该改成如下:
在pytorch中,全连接层是通过torch.nn.linear()这个函数实现的,输入的参数只有feature的channels(就是途中的in_features),而size则根据前面的量来自适应的,所以很多人会自动的认为不需要注意输入的shape,自适应即可。这时全连接层就会帮你把你超过二维的shape给自动调整成二维的,这时就会报错啦。所以要自己调整fc的输入shape,只要batchSize和Channel数即可。
全连接层真是神了……这个地方揣摩了一个早上,下午和同学讨论了一会突然灵光一现想到的。
代码终于跑起来了好开心,安心的去上课了。