贪心——牛牛VS牛妹

39 篇文章 1 订阅

贪心——牛牛VS牛妹

题目描述

给你一个网格,有些点被#覆盖了不能再走,其他点是空地,现在牛牛和牛妹轮流开始将空地变成#。
如果当前轮到的人操作之后左上角到右下角不存在通路了,当前操作的人就输了
通路只能是从左上角到右下角往右或者往下走的路径。
牛牛先开始操作,如果双方都是绝顶聪明,输出最后谁赢。

保证一开始给你的网格是存在一条左上角到右下角的通路的,当然,左上角与右下角都是空地。

输入描述

第一行输入两个整数n,m(2≤ n,m ≤ 20)。

接下来n行每行输入m个字符用来描述网格。

输出描述

输出赢的人的名字,“niuniu” 或者 “niumei”。

示例1

输入

2 2

输出

niuniu

示例2

输入

4 3

.#.
.#.

输出

niumei

示例3

输入

3 3
.##
…#
#…

输出

niumei

示例4

输入

4 4

…#
#…

输出

niuniu

备注:

子任务一30分:max(n,m)<=5

子任务二30分:max(n,m)<=10

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
char a[100][100];
int main()
{
	cin>>n>>m;
	int sum=0;
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			cin>>a[i][j];
			if(a[i][j]=='.'){
				sum++;
			}
		}
		getchar();
	}
	sum=sum-(n+m)+1;
	if(sum%2==0){
		cout<<"niumei"<<endl;
	}
	else{
		cout<<"niuniu"<<endl;
	}
	return 0;
} 

分析

这题只要将‘ . ’的总数减去从左上角到右下角的一条通路,再对2 取余,如果余2等于0,则是niumei赢,不然,则是niuniu赢。

贪心算法是一种问题求解方法,它在每一步总是做出当前情况下的最优选择,以期望获得最优解。而"最大整数"同样可以使用贪心算法来求解。 对于"最大整数"的问题,我们可以考虑如下的贪心策略:从高位开始,尽可能选择较大的数字。具体步骤如下: 1. 对于给定的整数,我们首先将其转化为一个数组,其中每个元素表示整数的一个位数。 2. 从最高位(最左侧)开始,遍历数组。 3. 对于当前位上的数字,从9开始递减,找到第一个小于等于当前数字的最大数字。 4. 如果找到了符合条件的最大数字,将其放在当前位。否则,不做任何操作。 5. 继续向下遍历,重复步骤3-4。 6. 最终,得到的数组即为满足条件的最大整数。 以一个具体的例子说明上述算法:假设给定的整数为5372。 1. 将整数转化为数组[5, 3, 7, 2]。 2. 从最高位开始遍历。 3. 对于第一位5,从9开始递减,找到第一个小于等于5的数字,为7。 4. 将7放在第一位,得到[7, 3, 7, 2]。 5. 对于第二位3,从9开始递减,找到第一个小于等于3的数字,为3(与当前数字相等)。 6. 不做任何操作,得到[7, 3, 7, 2]。 7. 对于第三位7,从9开始递减,找到第一个小于等于7的数字,为7。 8. 将7放在第三位,得到[7, 3, 7, 2]。 9. 对于第四位2,从9开始递减,找到第一个小于等于2的数字,为2。 10. 将2放在第四位,得到[7, 3, 7, 2]。 11. 遍历结束,最终得到的数组为[7, 3, 7, 2],转化为整数为7372。 通过上述贪心算法,我们得到了满足条件的最大整数7372。证明了贪心算法在"最大整数"问题中的有效性。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值