贪心——道路铺设
题目描述
春春是一名道路工程师,负责铺设一条长度为 n 的道路。
铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 n 块首尾相连的区 域,一开始,第 i 块区域下陷的深度为 di 。
春春每天可以选择一段连续区间 [L, R] ,填充这段区间中的每块区域,让其下陷深 度减少 1。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 0 。
春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为0。
输入描述:
输入包含两行,第一行包含一个整数 n,表示道路的长度。 第二行包含 n 个整数,相邻两数间用一个空格隔开,第 i 个整数为 di。
输出描述:
输出文件仅包含一个整数,即最少需要多少天才能完成任务。
示例
输入
6
4 3 2 5 3 5
输出
9
说明
一种可行的最佳方案是,依次选择:
[1,6]、[1,6]、[1,2]、[1,1]、[4,6]、[4,4]、[4,4]、[6,6]、[6,6]。
备注:
对于30%的数据,1 ≤ 𝑛 ≤ 10;
对于70%的数据,1 ≤ 𝑛 ≤ 1000;
对于100%的数据,1 ≤ 𝑛 ≤ 100000,0 ≤ di ≤ 10000 。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int n,d[100001];
cin>>n;
for(int i=0;i<n;i++){
cin>>d[i];
}
int sum=d[0];
for(int i=1;i<n;i++){
if(d[i]>d[i-1]){
sum+=d[i]-d[i-1];
}
}
cout<<sum<<endl;
return 0;
}