前缀和——Fibonacci进制
题目描述
Fibonacci数是非常有名的一个数列,它的公式为 f(n)=f(n-1)+f(n-2),f(0)=1,f(1)=2。
我们可以把任意一个数x表示成若干不相同的Fibonacci数的和, 比如说14 = 13+1 = 8+5+1 = 8+3+2+1。
如果把Fibonacci数列作为数的位权,即f(i)作为第i位的位权,每位的系数只能是0或者1,从而得到一个01串。 比如14可以表示成 100001,11001,10111。 我们再把这个01串看成2进制,再转成10进制以后就变成了 33,25,23。 为了避免歧义,我们将使用最小的那个值23。
请按照这个过程计算一下10进制整数通过上述转换过程得到的10进制整数。
输入描述
第一行是一个整数T(1 ≤ T ≤ 10000),表示样例的个数。
以后每行一个样例,为一个十进制正整数x(1 ≤ x ≤ 109)。
输出描述
每行输出一个样例的结果。
示例
输入
5
1
10
100
1000
1000000000
输出
1
14
367
10966
4083305275263
分析
为了使得到的结果尽可能小,则对于答案的二进制数 1 的位置要尽量靠后,因此,我们可以使用前缀和,当前 i - 1 个 Fibonacci 数之和小于 x 时,第 i 个数必须取,然后更新 x、ans 即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int t;
ll f[50],s[50];
int main()
{
f[0]=0,f[1]=1,f[2]=2,s[0]=0,s[1]=1,s[2]=3;
for(int i=3;i<=42;i++){
f[i]=f[i-1]+f[i-2];
s[i]=s[i-1]+f[i]; // 前缀和
}
cin>>t;
while(t--){
ll ans=0,x;
cin>>x;
for(int i=42;i>=0;i--){
if(s[i-1]<x){ // 当前 i-1 个 Fibonacci 数之和小于 x 时,则第 i 个数必须取
x-=f[i];
ans+=(ll)1<<(i-1);
}
}
cout<<ans<<endl;
}
return 0;
}