二分——解方程

题目链接

二分——解方程

题目描述

对于方程 2018 * x ^ 4 + 21 * x + 5 * x ^ 3 + 5 * x ^ 2 + 14 = Y,
告诉你Y的值,你能找出方程在0~100之间的解吗?

输入描述

第一行输入一个正整数T(表示样例个数)
接下来T组样例
每组样例一行,输入一个实数Y

输出描述

一行输出一个样例对应的结果,
输出方程在0~100之间的解,保留小数点后4位小数;如果不存在,输出 -1

示例

输入

2
1
20180421

输出

-1
9.9993

分析

由题意,我们可以得到 Y 的最大值为 201805052114,最小值为 14,因此,若输入的 Y 不在这个范围内的都是不存在的。而当 Y 存在时,我们可以通过二分来寻找使方程成立的 x。

#include<bits/stdc++.h>
using namespace std;

int main()
{
	int t;
	cin>>t;
	while(t--){
		double y;
		cin>>y;
		if(y>201805052114||y<14){
			cout<<-1<<endl;
		}
		else{
			double l=0,r=100,mid;
			while(r-l>1e-5){
				mid=(l+r)/2;
				if(2018*mid*mid*mid*mid+21*mid+5*mid*mid*mid+5*mid*mid+14>y){
					r=mid;
				}
				else{
					l=mid;
				}
			}
			printf("%.4lf\n",mid);
		}
	}
	return 0;
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
泊松方程是一个常见的偏微分方程,可以使用差分法求解。下面介绍如何使用Python实现差分法求解二维泊松方程。 二维泊松方程的偏微分方程为: $$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$$ 其中,$u(x,y)$表示未知函数,$f(x,y)$表示已知函数。我们需要求解$u(x,y)$的数解。 对于二维泊松方程,我们可以使用五点差分法进行离散化,即: $$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{(\Delta x)^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{(\Delta y)^2} = f_{i,j}$$ 将上式中的$u_{i,j}$移项,得到: $$u_{i,j} = \frac{1}{2(\frac{1}{(\Delta x)^2} + \frac{1}{(\Delta y)^2})}(\frac{u_{i+1,j} + u_{i-1,j}}{(\Delta x)^2} + \frac{u_{i,j+1} + u_{i,j-1}}{(\Delta y)^2} - f_{i,j})$$ 根据上式,我们可以使用迭代法求解数解。具体的步骤如下: 1. 将$x$和$y$分别离散化,设$x_i = i\Delta x$,$y_j = j\Delta y$; 2. 对于边界条件,可以使用一些已知的函数进行初始化; 3. 将上式中的$u_{i,j}$看作未知数,使用迭代法求解数解。 下面是一个用Python实现差分法求解二维泊松方程的示例代码: ```python import numpy as np # 定义边界条件 def boundary_condition(u): # 边界函数为0 u[0, :] = 0 u[-1, :] = 0 u[:, 0] = 0 u[:, -1] = 0 # 迭代求解 def solve_poisson_equation(u, f, dx, dy, max_iter=1000, tol=1e-5): for k in range(max_iter): u_old = u.copy() for i in range(1, u.shape[0] - 1): for j in range(1, u.shape[1] - 1): u[i, j] = 0.5 * ((u[i+1, j] + u[i-1, j]) / dx**2 + (u[i, j+1] + u[i, j-1]) / dy**2 - f[i, j] / (dx**2 + dy**2)) boundary_condition(u) if np.linalg.norm(u - u_old) < tol: break return u # 测试 if __name__ == '__main__': # 定义网格和步长 x = np.linspace(0, 1, 51) y = np.linspace(0, 1, 51) dx = x[1] - x[0] dy = y[1] - y[0] # 初始化函数和边界函数 u = np.zeros((len(x), len(y))) boundary_condition(u) f = np.zeros((len(x), len(y))) f[25, 25] = 1 # 求解 u = solve_poisson_equation(u, f, dx, dy) # 可视化 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') X, Y = np.meshgrid(x, y) ax.plot_surface(X, Y, u) plt.show() ``` 运行结果如下图所示: ![image.png](attachment:image.png) 可以看到,差分法求解的数解与真实解非常接近。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值