数据集:同一年龄段学生身高数据

数据集:同一年龄段学生身高数据

包含内容:均值、方差、标准差、变异系数、偏度、峰度、中位数、上、下四分位数、四分位极差、直方图、茎叶图、三均值、正态性分析与检验。

数据集

126 149 143 141 127 123 137 132 135 134 146 142
135 141 150 137 144 137 134 139 148 144 142 137
147 138 140 132 149 131 139 142 138 145 147 137
135 142 151 146 129 120 143 145 142 136 147 128
142 132 138 139 147 128 139 146 139 131 138 149

先将数据集保存为1.2.txt

导包

import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
from itertools import groupby

导入数据

height = np.loadtxt('1.2.txt')

计算均值、方差、标准差、变异系数、偏度、峰度

print('均值',np.mean(height))
print('方差',np.var(height))
print('标准差',np.std(height))
print('变异系数',np.std(height)*100 / np.mean(height))
print('偏度',st.skew(height))
print('峰度',st.kurtosis(height))

结果

均值 139.0
方差 49.06666666666667
标准差 7.004760286167305
变异系数 5.039395889328997
偏度 -0.4972356172167568
峰度 -0.21422162984404558

计算中位数、上、下四分位数、四分位极差、三均值

print('中位数',np.median(height))
print('上四分位数',np.quantile(height,0.75))
print('下四分位数',np.quantile(height, 0.25))
print('四分位极差',np.quantile(height,0.75)-np.quantile(height, 0.25))
print('三均值',np.median(height)/2+np.quantile(height,0.75)/4+np.quantile(height, 0.25)/4)

结果

中位数 139.0
上四分位数 144.25
下四分位数 135.0
四分位极差 9.25
三均值 139.3125

作出直方图、茎叶图

直方图

plt.hist(height);
plt.ylabel('Numbers')
plt.xlabel('Height')
plt.title('studentHeights')

图示
在这里插入图片描述

茎叶图

for k, g in groupby(sorted(height.astype(int)), key=lambda x: int(x) // 10):
    lst = map(str, [int(y) % 10 for y in list(g)])
    print (k, '|', ' '.join(lst))

图示

12 | 0 3 6 7 8 8 9
13 | 1 1 2 2 2 4 4 5 5 5 6 7 7 7 7 7 8 8 8 8 9 9 9 9 9
14 | 0 1 1 2 2 2 2 2 2 3 3 4 4 5 5 6 6 6 7 7 7 7 8 9 9 9
15 | 0 1

进行正态性分析和检验

print('正态性检验',st.kstest(height, 'norm', (np.mean(height), np.std(height))))

结果

正态性检验 KstestResult(statistic=0.08762284592013109, pvalue=0.713116118134703)

结论
p p p值大于0.05,接受假设:该数据服从正态分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值