高等数学-多元函数微分法

1,多元函数的概念

1.1 函数是数集到数集的映射,多元函数是n维空间Rn上的点集D到一维空间R上的映射。n维空间R^n上的点集D到一维空间R上的映射。nRnDR

1.2 多元函数极限和连续性的定义方法与一元函数类似(判断多元函数极限是否存在的技巧:从y=kx的方向去趋近;分别从y=x和y=-x两个方向去趋近)。

1.3 有界性与最大值最小值定理。在有界闭区域D上的多元连续函数,必定在D 上有界,且能取得它的最大值和最小值。

1.4 介值定理。在有界闭区域D上的多元连续函数必取得介于最大值和最小值之间的任何值。

1.5 一致连续性定理。在有界闭区域D上的多元连续函数必定在D上一直连续。

2,偏导数

2.1 在求偏导数时,一定要先固定坐标系统,哪些是自变量要搞清楚。如果以x,y,z为自变量的函数,求对x的偏导数时将y和z看成常量即可。

2.2 偏导数的几何意义是与曲线在某点的切线,或曲面在某个方向的切线联系在一起的。

2.3 如果函数z=f(x,y)的两个二阶混合偏导数∂2z∂y∂x及如果函数z=f(x,y)的两个二阶混合偏导数\frac{\partial^2z}{\partial y\partial x}及z=f(x,y)yx2z∂2z∂x∂y在区域D内连续,那么在该区域内这两个二阶\frac{\partial^2z}{\partial x\partial y}在区域D内连续,那么在该区域内这两个二阶xy2zD
混合偏导数必相等。混合偏导数必相等。反之,相等推不出连续。

3,全微分

3.1 定义:设函数z=f(x,y)在点(x, y)的某邻域内有定义,如果函数在点(x, y)的全增量
Δz=f(x+Δx,y+Δy)−f(x,y)\Delta z=f(x+\Delta x, y+\Delta y)-f(x, y)Δz=f(x+Δx,y+Δy)f(x,y)可表示为
Δz=AΔx+BΔy+o(ρ)\Delta z=A\Delta x+B\Delta y+o(\rho)Δz=AΔx+BΔy+o(ρ)
其中A、B不依赖于Δx、Δy而仅与x、y有关,则称函数z=f(x,y)在点f(x,y)可微分,而AΔx+BΔy称为函数z=f(x,y)在点(x,y)的全微分,记作dz,即dz=AΔx+BΔy。\Delta x、\Delta y而仅与x、y有关,则称函数z=f(x,y)在点f(x,y)可微分,而A\Delta x+B\Delta y称为函数z=f(x,y)在点(x,y)的全微分,记作dz,即dz=A\Delta x+B\Delta y。ΔxΔyxyz=f(x,y)f(x,y)AΔx+BΔyz=f(x,y)(x,y)dzdz=AΔx+BΔy

3.2 全微分进一步可以写成偏导数的形式:dz=∂z∂xΔx+∂z∂yΔydz=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta ydz=xzΔx+yzΔy。函数在点(x,y)处可微分可以推出函数在该点的偏导数都存在,推不出来各偏导数连续。

3.3 如果函数在点(x,y)处各偏导数连续,则函数在该点可微分。

4,隐函数求导法则

4.1 x和y两个未知数
在这里插入图片描述
4.2 x,y和z三个未知数
在这里插入图片描述
4.3 两个方程的情形
在这里插入图片描述
在这里插入图片描述

5,一元向量值函数

5.1 一元向量值函数是一维空间R上的点D到n维空间Rn的映射。一元向量值函数是一维空间R上的点D到n维空间R^n的映射。RDnRn一元向量值函数是普通一元函数的推广。

5.2 将一维点集投射到三维空间中,可以表示如下:
在R3中,若向量值函数f⃗(t),t∈D的三个分量函数分别为f1(t),f2(t),f3(t),t∈D,则向量值函数f⃗可表示为f⃗(t)=f1(t)i⃗+f2(t)j⃗+f3(t)k⃗,t∈D.在R^3中,若向量值函数\vec f(t),t\in D的三个分量函数分别为f_1(t),f_2(t),f_3(t),t\in D,则向量值函数\vec f可表示为\vec f(t)=f_1(t)\vec i+f_2(t)\vec j+f_3(t)\vec k,t\in D.R3f(t),tDf1(t),f2(t),f3(t),tDff(t)=f1(t)i+f2(t)j+f3(t)k,tD.

5.3 两向量垂直代表它们的数量积为0,两向量平行则它们的坐标成正比。

6,方向导数与梯度

6.1 方向导数
在这里插入图片描述
在这里插入图片描述
6.2 梯度一个向量。方向导数是一个数值。
在这里插入图片描述

7,多元函数的极值

7.1 必要条件
设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处设函数z=f(x,y)在点(x_0,y_0)具有偏导数,且在点(x_0,y_0)处z=f(x,y)x0,y0(x0,y0)
有极值,则有fx(x0,y0)=0,fy(x0,y0)=0.有极值,则有f_x(x_0,y_0)=0,f_y(x_0,y_0)=0.fx(x0,y0)=0,fy(x0,y0)=0.

7.2 充分条件
在这里插入图片描述
在这里插入图片描述

8,拉格朗日乘数法

9,二元函数的泰勒公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值