之前写了一篇
利用OpenCV做个熊猫表情包吧_Leen的博客-CSDN博客
回想起来觉得有点太弱了,意犹未尽,每次使用需要自己去手动截取人脸,清除黑边什么的才能使用demo去合成表情,无奈之前由于安装的vs,opencv版本都比较低,也懒得再折腾。
恰逢前些天电脑硬盘坏了,数据丢了,一切都要重装,那直接高配走起,VS2022+OpenCV4.8,既然环境都有了,于是有空的时候就改进了一下,让它利用opencv,做简单的人脸识别,自动去图片中识别、提取人脸,同时去做黑边清理工作,自动化程度更高,用起来更省事儿~
原理呢就是在处理原始图片的流程中加入了面部识别,将面部单独切出来,同时对面部图片做黑边清晰处理,然后再进行表情的合成工作,下面介绍一下具体过程:
首先是识别到用户输入的原图
利用opencv进行面部识别
灰度化图片后提取面部,并清理黑边
再将面部跟熊猫脸进行融合
下面介绍关键步骤的代码:
初始化面部识别
int InitFaceDetect()
{
if (!faceCascade.load("D:\\Workspace\\opencv\\build\\etc\\haarcascades\\haarcascade_frontalface_default.xml")) {
cout << "人脸检测级联分类器没找到!!" << endl;
return -1;
}
if (!eyes_Cascade.load("D:\\Workspace\\opencv\\build\\etc\\haarcascades\\haarcascade_eye_tree_eyeglasses.xml")) {
cout << "眼睛检测级联分类器没找到!!" << endl;
return -1;
}
return 0;
}
用到的两个xml特征文件均为openCV提供。
清楚灰度图像中的深色边角区域
/************************************************************************/
/* 消除图片四周的黑色边角区域 */
/************************************************************************/
Mat RemoveBlackCorner(Mat img)
{
int i, j;
int h = img.size().height;
int w = img.size().width;
if (img.channels() == 1) //灰度图片
{
for (j = 0; j < h; j++)
{
for (i = 0; i < w; i++)
{
if (img.at<uchar>(j, i) < 110)
{
img.at<uchar>(j, i) = 255;
}
else
{
break;
}
}
for (i = w - 1; i >= 0; i--)
{
if (img.at<uchar>(j, i) < 110)
{
img.at<uchar>(j, i) = 255;
}
else
{
break;
}
}
}
for (i = 0; i < w; i++)
{
for (j = 0; j < h; j++)
{
if (img.at<uchar>(j, i) < 110)
{
img.at<uchar>(j, i) = 255;
}
else
{
break;
}
}
for (j = h - 1; j >= 0; j--)
{
if (img.at<uchar>(j, i) < 110)
{
img.at<uchar>(j, i) = 255;
}
else
{
break;
}
}
}
}
return img;
}
人脸识别以及将加工后的人脸存成临时文件
bool parse_cmd(int argc, char* argv[])
{
if (argc < 3)
{
return false;
}
g_str_src = string(argv[1]);
g_str_bg = string(argv[2]);
return true;
}
string GetFolderFromFile(string strFile)
{
size_t last_slash = strFile.find_last_of("\\");
std::string directory = strFile.substr(0, last_slash);
return directory;
}
int DetectFace(Mat img, Mat imgGray) {
namedWindow("src", WINDOW_AUTOSIZE);
vector<Rect> faces, eyes;
faceCascade.detectMultiScale(imgGray, faces, 1.2, 5, 0, Size(30, 30));
int retVal = -1;
//目前只取一个脸
if (faces.size() > 0) {
for (size_t i = 0; i < faces.size(); i++) {
//框出人脸位置
rectangle(img, Point(faces[i].x+ faces[i].width / 8, faces[i].y+faces[i].height / 8),
Point(faces[i].x + faces[i].width*7/8, faces[i].y + faces[i].height * 7 / 8), Scalar(0, 0, 255), 1, 8);
cout << faces[i] << endl;
//将人脸从灰度图中抠出来
Mat face_ = imgGray(faces[i]);
//缩小一点,默认取的矩形比较大
Rect rect(Point(faces[i].width / 8, faces[i].height / 8),
Point(faces[i].width * 7 / 8, faces[i].height * 7/ 8));
Mat ROI = face_(rect);
//RemoveBlackBorder(ROI, ROI);
Mat imgOut = RemoveBlackCorner(ROI);
//RemoveBlackBorder(ROI, imgOut);
imwrite(g_str_face, imgOut);
retVal = 0;
eyes_Cascade.detectMultiScale(face_, eyes, 1.2, 2, 0, Size(30, 30));
for (size_t j = 0; j < eyes.size(); j++) {
Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2);
int radius = cvRound((eyes[j].width + eyes[j].height) * 0.25);
circle(img, eye_center, radius, Scalar(65, 105, 255), 4, 8, 0);
}
}
}
imshow("src", img);
return retVal;
}
主逻辑流程
int main(int argc, char* argv[])
{
if (!parse_cmd(argc, argv))
{
cout << "command error" << endl;
return -1;
}
if (InitFaceDetect() != 0)
{
return -1;
}
//
string strDirBase = GetFolderFromFile(g_str_src);
Mat img_src = imread(g_str_src);
Mat img_background = imread(g_str_bg);
g_str_face = strDirBase + "\\tmp_face.jpg";
#ifdef _DBG_SHOW
namedWindow("img_src");
imshow("img_src", img_src);
#endif
Mat img_gray;
cvtColor(img_src, img_gray, COLOR_BGR2GRAY); //图像灰度化
int nFace = DetectFace(img_src, img_gray);
waitKey(3000);
#ifdef _DBG_SHOW
namedWindow("gray", WINDOW_NORMAL);
imshow("gray", img_gray);
#endif
// 按照背景图大小等比缩放
Size dsize = Size(img_background.cols * 0.55, img_background.rows * 0.55);
//判断一下是否自动检测到了人脸
Mat img_face;
if (nFace == 0)
{
cout << "opencv find face,get face." << endl;
img_face = imread(g_str_face);
}
else
{
cout << "can not find face.use image user input." << endl;
img_face = img_gray;
}
resize(img_face, img_face, dsize, 1, 1, INTER_AREA);
//输出缩放后效果图并重新加载
Mat img_face2;
threshold(img_face, img_face2, 105, 255, THRESH_BINARY);
imwrite(strDirBase + "\\tmp.jpg", img_face2);
//imshow("img_face2", img_face2);
Mat img_face3 = imread(strDirBase + "\\tmp.jpg");
//居中粘合两图
Rect roi_rect = Rect((img_background.cols - img_face3.cols) / 2, (img_background.rows - img_face3.rows) / 2
, img_face3.cols, img_face3.rows);
img_face3.copyTo(img_background(roi_rect));
//显示并输出
imshow("mixed", img_background);
imwrite(g_str_src + ".emoji.jpg", img_background);
waitKey(5000);
destroyAllWindows();
return 0;
}
完整代码可以从github上拉
LeenLi/panda_emoji: a tool which can convert your photo to emoji (github.com)