自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

xiao__run的博客

IT菜鸟之家

  • 博客(125)
  • 收藏
  • 关注

原创 摄像头与激光雷达微波雷达的融合算法之三-----关联

1、前言确实是好久没有写博客了,好多朋友一直催我写融合得,接下来我更新快点,接着上一篇(210条消息) 摄像头与激光雷达微波雷达的融合算法之二标定_xiao__run的博客-CSDN博客继续介绍,接下来我介绍如何进行关联匹配...

2021-10-12 15:42:59 1421

原创 Jetson系列目标检测及推流

使用硬件编码,gstreamer推rtsp流至平台

2022-10-17 14:15:02 954

原创 道路病害检测识别

道路病害检测项目方案一、项目背景和意义1.1项目背景截止至 2021年底,全国公路总里程达到519.8万公里,总道路通车里程稳居世界第一。公路建设的迅猛发展不仅让人们的出行变得更加便捷,也在一定程度上促进了我国经济的发展。随着公路里程数的不断增加以及其使用时间的增长,使得路面的保养维护工作变得尤为重要,完善的路面养护系统能够延长路面的使用寿命,保障人们安全日常出行。路面病害是衡量路面质量的一个重要指标,在公路建成投入使用后,因车辆荷载及环境的影响,路面会出现各种各样的病害现象,这些病害.

2022-05-23 16:31:18 843 3

原创 python ftp上传以及线程监测

python监测线程以及FTP文件上传

2022-02-24 16:14:24 1461

原创 摄像头与激光雷达微波雷达的融合算法之五----匈牙利匹配

前言在做自动驾驶的过程中,很常见的一个问题就是,你拥有摄像头的数据,也拥有雷达数据,这时候要怎么融合呢?这时候我们想到了常见的多目标匹配算法:匈牙利算法和KM算法,因为匈牙利算法是没有带权重的,而我们这种场景很显然想要的就是谁离我更近我要谁,当然选用KM算法更为合适。在这篇,先介绍匈牙利算法,有助于理解,实际上KM算法就是在匈牙利算法上添加了权重而已。具体算法介绍网上特别多,大家可以看下这链接里得介绍,我这里主要给实现方式,代码注释,已经调用方法https://zhuanla.

2021-10-25 15:02:43 907

原创 摄像头与激光雷达微波雷达的融合算法之四----卡尔曼滤波

1、卡尔曼滤波的五大公式系统的状态方程为:这个状态方程是根据上一时刻的状态和控制变量来推测此刻的状态,wk-1是服从高斯分布的噪声,是预测过程的噪声,它对应了 xk 中每个分量的噪声,是期望为 0,协方差为 Q 的高斯白噪声wk-1~N(0,Q),Q即下文的过程激励噪声Q.观测方程为:vk是观测的噪声,服从高斯分布,vk~N(0,R),R即下文的测量噪声R。卡尔曼滤波算法有两个基本假设: ( 1) 信息过程的足够精确的模型,是由白噪声所激发的线性( 也可以是时变的) 动态系统..

2021-10-21 11:30:13 762

原创 Jetson nano ubuntu18.04配置软件自启

我这里有一个start.sh文件脚本需要设置为自启,具体操作如下:1、建立rc-local.service文件sudo vi /etc/systemd/system/rc-local.service2、将下列内容复制进rc-local.service文件################################################[Unit]Description=/etc/rc.local CompatibilityConditionPathExists=/

2021-09-22 13:47:22 306

原创 Deepstream配置文件解析

1、配置文件格式讲解参考glib官网APIhttps://developer.gnome.org/glib/2.60/glib-Key-value-file-parser.htmlGKeyFile允许您解析、编辑或创建包含键值对组的文件,因为缺少更好的名称,我们将其称为“key files”。 现在,一些free desktop.org规范使用key files,例如 Desktop Entry Specification 和 Icon Theme Specification.。Deskt

2021-07-21 16:20:25 526

原创 Deepstream使用udp-json进行数据结构封装

1、背景 通常我们检测出目标结果后,通常还需要与其他设备进行通信,例如将检测结构化数据进行json或者protobuf序列化,通过udp发送至客户端,此时就需要我们进一步开发,在这篇文章里我们采用deepstream框架进行开发的,需要对gstreamer有一定程度了解,才能进行进一步开发,我们以json UDP发送为例,最红客户端接收的json示例如下:接受代码如下,由于前四个字节是头:import socketimport jsonbufsize=10240...

2021-07-21 13:57:50 375

原创 Jetson实时目标检测追踪推流--TLT训练、剪枝

1、背景 在医院、机场、车站等场所中,需要对行人进行实时口罩检测。本文基于NVIDIA TLT工具,介绍口罩检测模型的训练及部署方法,实现在嵌入式端实时处理的效果。在嵌入式上部署推理性能表如下,可以看到裁剪后的模型,即使在 Jetson Nano平台上也能跑搭配20帧,做到实时处理的效果。流程如下2、 安装2.1 docker部署安装 首先部署一下容器环境,进入容器环境中2.2、训练步骤总体来说分为8步骤 1、下载预...

2021-07-08 21:01:08 1049 1

原创 Jetson Nano使用tensorrt部署resnet18进行分类

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pytorch训练数据、测试 二、转换成tensorrt模型engine 1.模型转换 2.接摄像头模型测试 总结前言最近接到有个目标分类的需求,需要使用jetson-nano海康摄像头针对在大规模农业种植中传统人工农作物病虫害预防和治理上存在的问题同,应用深度学习算法来进行农作物病虫害的检测,对农作物荧光图片进行病害识别检测,包含多个农作物物种。采用目前流行的深度网络结构,如深度

2021-06-23 17:09:11 1184 2

原创 jetson-nano多目标追踪过线计数

利用jetson-nano,不依赖pytorch ,对yolov5添加按中心点匹配的多目标追踪模块,添加过线计数模块,最终耗时37ms左右,效果如下需要Nvidia模组,套件,算法的请加群193369905,联系群主开发1、框架tensorrt7.2.1.6cuda-10.2cudnn-8opencv3.4.92、技术思路细节目前大家使用jetson-nano如果想达到实时的目标检测追踪效果基本需要借助deepstream去实现,原因是deepstream,集成了读流,解码,预处理,推

2021-05-31 13:36:50 2300

原创 jetson-nano使用tensorrt部署yolov5

项目前景近期碰到很多项目,都是低硬件成本,在英伟达平台部署。英伟达平台硬件平常见到算力从小到大依次为 jetson-Nano、jetson-tk1、jetson-TX、jetson-xavier,加个从1000到10000不等,正好小编我全部都入手了一套,而且英伟达有个很好的量化的工具tensorrt. tensorrt有个很好的学习资源,大家可以参考学习下感谢这位开源的大佬https://github.com/wang-xinyu/tensorrtxJetson-nano具备环境open

2021-05-21 16:44:26 12356 26

原创 实现视频人数统计python-flask-yolov5

需求介绍客户端请求输入一段视频或者一个视频流,输出人数或其他目标数量,上报给上层服务器端,即提供一个http API调用算法统计出人数,最终http上报总人数相关技术 python pytorch opencv http协议 post请求FlaskFlask是一个Python实现web开发的微框架,对于像我对web框架不熟悉的人来说还是比较容易上手的。Flask安装sudo pip install Flask一个简单服务器应用为了稍微了解一下flask是如何使用的,先做一个简单的服

2021-05-19 13:58:05 2238 3

原创 车路协同感知相关工具

车路协同相关工具: 1.根据两点的经纬度求方位角和距离 2.根据两点的经纬度求方位角和距离 3.GPS轨迹拟合(根据经纬度计算距离和方向角) 4.根据坐标点位置计算方位角(python实现) 5.计算两个GPS坐标的方位与距离 6.GPS速度和航向计算 7.单目视觉定位测距的两种方式 8.一种基于单目视觉的车辆测距与碰撞预警方法 9.基于数据回归建模的单目视觉测距算法 10.用...

2021-05-16 23:21:52 267

原创 python利用ffmpeg进行rtmp推带检测框的流

思路:opencv读取视频 —> 将视频分割为帧 —> 将每一帧进行需求加工后 —>目标检测----> 将此帧写入pipe管道 —> 利用ffmpeg进行推流直播pipe管道:利用这个特点, 把处理后的图片放入管道, 让ffmpeg读取处理后的图像帧并进行rtmp推流即可直接读取摄像头版本的代码import subprocess as sprtmpUrl = "'rtmp://localhost:1935/live_original/4"camera_path

2021-03-11 14:05:14 1517 1

原创 python 局部直角坐标转WGS8484坐标

一、路端场景应用在车路协同中,我们感知的时候经常需要把感知的目标转为经纬度,由此包括图像、雷达坐标转真实世界坐标,世界坐标转WGS84坐标。例如感知到目标经纬度求速度,已知两点经纬度求距离;已知当前雷达84坐标,和雷达前方一障碍物84坐标,求此障碍物与雷达的连线与正北方向夹角;已知雷达84坐标与障碍物相对于雷达的距离,求此障碍物84坐标可转化为以下几个问题处理二、解决问题1、已知两点经纬度,求两点间距离;2、已知两点经纬度,求一点相对于另一点航向;3、已知一点经纬度及与另一点距离和航向,求另一

2021-03-04 17:55:57 699 2

原创 摄像头与激光雷达微波雷达的融合算法之二标定

多激光雷达与摄像头的融合算法(二)

2020-09-29 16:22:02 3236 10

原创 pytorch对植物病虫害迁移学习分类

一、 项目描述针对在大规模农业种植中传统人工农作物病虫害预防和治理上存在的问题同,应用深度学习算法来进行农作物病虫害的检测,对农作物荧光图片进行病害识别检测,包含多个农作物物种。采用目前流行的深度网络结构,如深度神经网络图像进行特征抽取,采用交叉熵和正则化项组成损失函数进行反向传播调整,对数据集进行不同情况的划分;并且使用迁移训练训练方式,最终达到根据摄像头采集的荧光照片能够分析出该植物可能有的病症。二、 识别系统设计如下图所示:三 实验步骤实验采用python编程语言,版本为3.7,以及深度

2020-08-27 19:47:32 2061 5

原创 yolov5+deepsort多目标追踪,人数以及车辆统计

软件库:pytorch + numpy+opencv硬件 1080ti描述:速度: 只运行 yolov5 检测, 速率大概为 75 fps, 添加 deep_sort 多目标追踪后, 速率大概为35 fps (显卡 GTX1080Ti.)添加了每一类目标计数的功能https://github.com/xiaorun2345/yolov5-deepsort...

2020-07-21 18:11:11 28656 57

原创 智慧城市——人数统计与车辆统计方法研究

智慧城市——人数统计 与车辆统计方法研究https://github.com/yehengchen/Object-Detection-and-Tracking

2020-04-19 13:58:32 1374

原创 多激光雷达与摄像头的融合算法(一)

2020年得第一篇博客,真是好长时间没发博客,这半年里毕业到一家公司之后比较忙,不发博客内心是比较着急,总觉得没记录点啥。年底了,写点东西吧,不然csdn恐怕要取消我博客专家的评级了。接下俩我分两章介绍一下文章,小编手里有两个传感器,6个激光雷达与摄像头,还有一个微波摄像头,需要将这些传感器进行融合输出目标列表。第一篇讲解如何进行通信,后面第二章讲解具体算法实现。激光雷达可以获取目标前方的环境...

2020-01-07 14:21:42 8777 5

原创 多目标追踪近几年论文及代码

多目标追踪论文代码集锦:https://github.com/SpyderXu/multi-object-tracking-paper-list

2019-10-29 10:16:50 1311

转载 python udp传输图像与文件

感谢这位作者https://blog.csdn.net/qq_36852276/article/details/907611221.理论基础首先要了解UDP的工作模式对于服务器,首先绑定IP和端口,本机测试的时候可以使用127.0.0.1是本机的专有IP,端口号 大于1024的是自定义的,所以用大于1024的端口号,然后接收客户端数据,处理,返回对于客户端,UDP不用建立连接,只管发送不...

2019-07-23 15:42:44 3916 1

原创 python多线程多进程

下面给出两个多线程实例,大家可自行学习多线程# -- coding: utf-8 --import cv2import numpy as np#引入多线程模块import threadingi=1t_lock=threading.Lock()class read_frame(threading.Thread): def __init__(self,cap): ...

2019-07-22 19:40:42 2354 3

原创 已知三点坐标求三角形面积等几何图形学问题算法

算法1. 求多边形面积设A(x1,y1),B(x2,y2),C(x3,y3)由A–>B–>C–>A 按逆时针方向转。(行列式书写要求)设三角形的面积为S则S=(1/2)(下面行列式)|x1 y1 1||x2 y2 1||x3 y3 1|S=(1/2)(x1y21+x2y31+x3y11-x1y31-x2y11-x3y21)即用三角形的三个顶点坐标求其面积的公式...

2019-07-16 11:19:33 4311

原创 深度学习目标检测数据集扩增方法

先放出链接吧,后续跑得时候补充论文传送门:https://arxiv.org/abs/1906.11172代码传送门:https://github.com/tensorflow/tpu/tree/master/models/official/detection

2019-07-03 14:33:02 4461 1

原创 人流量统计(opencv,caffe,dlib)

直接接到一个小项目开发,是做公园的人流量统计,涉及到很多方面的知识,小编在这里记录一下流程,涉及行人识别,多目标追踪,匹配等知识。参考国外博文,这是一个opencv学习的很好的网站。小编就是从这位大佬博客入手学习的计算机视觉,特此感谢。https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/1、...

2019-06-21 18:04:05 12147 28

原创 opencv双目测距(BM 与SGBM匹配)

1、引言在一年之前小编写了一篇双目测距的博文,引入了大量的童鞋阅读,其博文介绍了详细的相机标定与双目测距过程和代码https://blog.csdn.net/xiao__run/article/details/78900652摄像头如前面文章所示,大家可自行购买,小编就是在这家购买https://shop224405513.taobao.com/search.htm?spm=a1z10....

2019-06-18 14:58:47 21342 16

原创 车位线识别之四关于鱼眼相机的一些API

1、引言自动泊车的博客小编已经写了好几篇了,但是部分都没有代码,今天我从鱼眼相机图像到鸟瞰变换之间的变换写一篇博客,以记录这段过程首先我们看下车位的鱼眼图像我们已经通过标定得到了内参与畸变参数,接下来我们进行矫正,由于矫正会损失好多有效信息,这里我给出两个opencv 的API,我们看下fisheye::estimateNewCameraMatrixForUndistortRectify(...

2019-06-17 11:58:58 2668

转载 tensorlfow学习之四训练集样本不平衡问题

本文转自https://zhuanlan.zhihu.com/p/23444244      卷积神经网络(CNN)可以说是目前处理图像最有力的工具了。而在机器学习分类问题中,样本不平衡又是一个经常遇到的问题。最近在使用CNN进行图片分类时,发现CNN对训练集样本不平衡问题很敏感。在网上搜索了一下,发现这篇文章https://link.zhihu.com/?target=http%3A//www...

2019-06-12 11:42:11 1373

原创 tensorflow学习之三 (添加批规范化减少过拟合,提高准确率)

在这我以mnist数据集为例,简单的搭建了一个7层网络,其余参数与前一博客相同,此代码结合前一篇即可完成自己的数据集训练。import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("MNIST_data/", one_ho...

2019-06-10 21:21:30 2050

原创 tensorflow学习之二 alexnet vgg resnet目标分类

1、引言这节我们将介绍图像分类问题,任务是给定一个输入图片,将其指派到一个已知的混合类别中的某一个标签。图像分类是计算机视觉领域的核心问题之一,尽管它很(看上去)很简单,但是却有广泛的实践应用。而且,在之后的我将会使用tensorlfow 实现图像分割,许多其他的看上去不同的计算机视觉任务(例如物体识别,分割),都能够还原成图像分类。例如,在下图中,一个图像分类模型将一个图片分配给四个类别(c...

2019-06-06 11:30:03 1247

原创 tensorflow学习之一股票预测(BP神经网络回归预测)

软件 :ubuntu +numpy +tensorflow硬件:GPU神经网络的内容一般,一个神经网络程序包含以下几部分内容。1.数据表达和特征提取。对于一个非深度学习神经网络,主要影响其模型准确度的因素就是数据表达和特征提取。同样的一组数据,在欧式空间和非欧空间,就会有着不同的分布。有时候换一种思考问题的思路就会使得问题变得简单。所以选择合适的数据表达可以极大的降低解决问题的难度。同样,...

2019-06-03 15:01:40 17583 1

原创 Jetson-Nano安装caffe及环境配置

1 引言:最近英伟达发布了新的硬件,号称Nvidia良心之作的99美元AI硬件Jetson-Nano:国内售价899元,可参考店家,可加群讨论,加群附上:Jetson-Nano 群号193369905https://item.taobao.com/item.htm?spm=a2126o.11854294.0.0.71ce4831dmvb9w&id=593522489685&...

2019-05-06 13:54:16 3590 3

原创 自动泊车(之三)车位线定位(视觉定位)

1 引言  在前篇博客中,小博介绍了车位检测得一些方法,当车位识别出来其实就是将车位在图像坐标系中得坐标(u,v)给找出来,但是给出图像坐标是无法提供给决策层去倒车入库得,我们需要提供得是3D坐标,接下来本篇略浅得讲下视觉定位的知识,如何从鱼眼相机2D图像坐标到3D坐标。在看此文之前需要具备基本得相机模型知识,我在前面博文讲过不少双目相机标定得知识,可参考前面得知识。本文参考博客http:/...

2019-04-24 09:14:51 11769 7

原创 opencv3 adboost LBP HOG车位线检测

这节博客我记录了下利用adaboost训练LBP 特征得过程,opencv3至于原理这里就不再进行详细介绍了,直接说明如何进行训练。在opencv的安装目录中的E:\opencv-3.1.0\opencv\build\x64\vc14\bin文件夹下有两个可执行文件opencv_createsamples.exe和opencv_traincascade.exe。将这两个文件拷贝到训练文件夹下,...

2019-04-18 14:33:15 1427 1

原创 自动驾驶之车位线检测之二单路鱼眼相机矫正裁剪(python ,C++,opencv)

前篇博文涉及到了使用四路鱼眼图像拼接并识别车位线,这个过程涉及到鱼眼图像的标定,矫正以及裁剪,这篇博文我就就这个工作详细介绍一下,工作流程如下:1采集图像首先采用opencv采集到棋盘格图像,大约20几张,我的棋盘格是11x8个角点,60mm大小.如下:2 标定图像将20几张图像放入一个文件夹,标定得出内参与畸变参数:,代码如下,opencv3版本与pythonimport cv2im...

2019-04-12 18:40:36 3495 4

原创 自动驾驶之车位线检测(opencv,c++)

1、引言近年来随着对泊车辅助系统需求的快速增长,提出了多种车位定位的方法,这些方法大致可分为4类:基于用户界面的、基于设施的、基于空闲位的和基于车位线的方法。与其他方法相比,基于车位线的方法有以下优势:(1)可以与基于用户界面的方法结合使用来减少由于司机重复操作带来的不便,而这是基于用户界面方法的主要缺陷。(2)不同于基于空闲位的方法,它能更准确地定位停车位,因为其定位过程不依赖于相邻汽车的停放...

2019-04-10 18:12:18 12045 33

原创 摄像头、激光雷达、毫米波雷达等传感器联合标定方法(自动驾驶之数据融合)

本文是来自黄浴博士的知乎专栏,(原谅我文章的图都是截图)主要概述自动驾驶系统中的传感器的标定的方法。讨论不同传感器之间的外参标定,特别是激光雷达和摄像头之间的标定。地址为https://zhuanlan.zhihu.com/p/570283411、引言传感器标定是自动驾驶的基本需求,一个车上装了多个/多种传感器,而它们之间的坐标关系是需要确定的。湾区自动驾驶创业公司ZooX的co-found...

2019-04-04 10:36:13 20606 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除