A-B Problem

A-B Problem

Time Limit: 1000MS Memory Limit: 65536KB
Problem Description

这次当然不是简单的 a-b 呐~

有一个神奇的变换规则是这样的:

给定两个数 x1, x2,我们首先令 a = max(x1, x2), b = min(x1, x2)。

只要 a, b 不都为 1,我们就进行一次变换,令 a' = max(b, a-b),b' = min(b, a-b)(其中 a', b' 为本次变换后的 a, b)。当 a, b 都为 1 时变换结束。

 

现在请你来计算一下,对于给定的数 x1, x2,要经过多少次变换才能使 a, b 全部变成 1。

Input

输入数据有多组(数据组数不超过 40),到 EOF 结束。

每组数据包含两个整数 x1, x2 (1 <= x1, x2 <= 100)。

保证输入数据一定有解。

Output

对于每组数据,输出一个整数代表答案。每组输出占一行。

Example Input
1 2
1 3
3 2
4 5
1 4
Example Output
1
2
2
4
3
Hint

题目描述中的 min() 指两个数的最小值,max() 指两个数的最大值。

Author
【2016级《程序设计基础(B)I》期末上机考试-第二场】UMR

#include <stdio.h>

int main()
{
    int max , min , x ,  a , b;
    while(~scanf("%d%d" , &a , &b))
    {
        x = 0;
         if (a > b)
            {
                max = a;
                min = b;
            }
        else
        {
            max = b ;
            min = a ;
        }
        while(max != 1 || min != 1)
        {
            x++;
            a = max;
            b = min;
           if (min > max - min)
           {
               max = min;
           }
           else
            max = max - min;
           if (b < a - b)
           {
               min = b;
           }
           else
            min = a - b ;
        }
        printf("%d\n" , x);
    }


}
大数减法问题通常可以使用字符串来表示大整数,然后模拟手工减法的过程来求解。具体思路如下: 1. 将两个大数用字符串表示,并将其逆序存储,方便从低位到高位进行操作。 2. 从最低位开始,依次计算两个大数对应位的差值,如果被减数小于减数,则需要向高位借位。 3. 如果被减数的长度大于减数的长度,则需要将被减数剩余的高位继续减去借位的值。 4. 最后将得到的结果字符串再次逆序输出即为最终结果。 下面是 C 语言的实现代码,其中用到了字符数组的逆序操作和进位处理: ```c #include <stdio.h> #include <string.h> int main() { char a[1005], b[1005], c[1005]; int la, lb, lc, i, x, y, z; // 读入两个大数 scanf("%s%s", a, b); la = strlen(a); lb = strlen(b); // 逆序存储 for (i = 0; i < la / 2; i++) { x = a[i]; a[i] = a[la - i - 1]; a[la - i - 1] = x; } for (i = 0; i < lb / 2; i++) { x = b[i]; b[i] = b[lb - i - 1]; b[lb - i - 1] = x; } // 从低位到高位逐位相减 lc = 0; for (i = 0; i < la || i < lb; i++) { x = (i < la) ? (a[i] - '0') : 0; y = (i < lb) ? (b[i] - '0') : 0; z = x - y - c[i]; if (z < 0) { c[i] = z + 10; c[i + 1] = 1; } else { c[i] = z; c[i + 1] = 0; } lc = i + 1; } // 处理高位借位 while (lc > 1 && c[lc - 1] == 0) { lc--; } // 逆序输出结果 for (i = lc - 1; i >= 0; i--) { printf("%d", c[i]); } printf("\n"); return 0; } ``` 需要注意的是,上述代码中只实现了大数减法的基本功能,对于错误输入和特殊情况(如减数大于被减数)没有进行判断和处理,需要根据实际情况进行修改和完善。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值