题目:
给你一个整数数组 nums 和一个整数 k ,编写一个函数来判断该数组是否含有同时满足下述条件的连续子数组:
子数组大小 至少为 2 ,且
子数组元素总和为 k 的倍数。
如果存在,返回 true ;否则,返回 false 。
如果存在一个整数 n ,令整数 x 符合 x = n * k ,则称 x 是 k 的一个倍数。
class Solution {
/*
1、前缀和
2、unordered_map
count 函数,返回对应 key 值的元素个数,因为 哈希表中的元素个数唯一,
所以如果存在则返回 0,否则返回1
* 对count的用法恨不熟悉啊,
3、结合同余定理
因此在哈希表中,key表示下标,value表示前缀和除以k 之后的余数
感觉还有有点想不通,这道题还是没有吃透
*/
// public:
// // 使用 unordered_map 实现
// bool checkSubarraySum(vector<int>& nums, int k)
// {
// int n = nums.size();
// if(n < 2) return false;
// unordered_map<int, int>mp;
// mp[0] = -1;
// int sum = 0;
// for(int i = 0; i < n; ++i)
// {
// sum = (sum + nums[i]) % k;
// // 如果mp中已经有这个余数了
// if(mp.count(sum))
// {
// int preIndex = mp[sum];
// if(i - preIndex >= 2) return true;
// }
// // 如果没有这个余数,就将这个余数添加到哈希表中
// else mp[sum] = i;
// }
// return false;
// }
public:
// 使用 unordered_set 实现
// 这个方法的感觉很想不通,这道题还是没有吃透
bool checkSubarraySum(vector<int>& nums, int k)
{
unordered_set<int> s;
int sum = 0;
int pre = 0;
for (int i = 0; i < nums.size(); ++i)
{
sum += nums[i];
int temp = sum % k;
if(s.count(temp)) return true;
s.insert(pre);
pre = temp;
}
return false;
}
};