DP 蓝桥杯-波动数列 100%代码

首先感谢这篇文章,让我清楚的明白思路http://blog.csdn.net/wr132/article/details/43861145


在这篇文章的基础上,我主要做了一些空间和时间上的优化。一下solve2()就是我优化后的代码,思路我就不再造无用的轮子了。

#include<iostream>
#include<string>
using namespace std;
//int dp[2][500001] = {0};
int dp[500001] = {0};


/*
void solve1()
{
	int a,b,n,s;
    int i,j;
	int res = 0;
    cin >> n >> s >> a >> b;
	dp[0][0] = 1;
    for(i = 1;i < n;i++)
    {
        for(j = 0;j <= i*(i+1)/2;j++)
        {
            if(j < i)
            {
                dp[i%2][j] = dp[(i+1)%2][j];
            }
            else if(j >= i)
            {
                dp[i%2][j] = (dp[(i+1)%2][j-i] + dp[(i+1)%2][j])%100000007;
            }                 
        }
    }
	int k = (i+1)%2;
	int div = n*(n-1)/2;
	for(j = 0;j <= div;j++)
	{
		if((s - (j)*a + (div-j)*b) %n == 0)
		{
			res = (res+dp[k][j])%100000007;
		}
	}
	cout << res << endl;
	system("pause");
}
*/
void solve2()
{
	int a,b,n;
	long long int s;
    int i,j;
	int res = 0;
    cin >> n >> s >> a >> b;
	dp[0] = 1;
    for(i = 1;i < n;i++)
    {
        for(j = i*(i+1)/2;j >= 0;j--)//从右到左可用一维
		{   
            if(j >= i)
            {
                dp[j] = (dp[j-i] + dp[j])%100000007;
            }                 
        }
    }
	long long int div = n*(n-1)/2;
	long long int k;
	long long int t;
	//以下两行进行时间优化
	k = s + div*b;
	t = a+b;
	for(j = 0;j <= div;j++)
	{
		if(k %n == 0)
		{
			res = (res+dp[j])%100000007;
		}
		k -= t;//优化
	}
	cout << res << endl;
	system("pause");
}

int main()
{
    solve2();
	return 0;    
    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值