问题描述观察这个数列:
1 3 0 2 -1 1 -2 ...
这个数列中后一项总是比前一项增加2或者减少3。
栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢?输入格式输入的第一行包含四个整数 n s a b,含义如前面说述。输出格式输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。样例输入4 10 2 3样例输出2样例说明这两个数列分别是2 4 1 3和7 4 1 -2。数据规模和约定对于10%的数据,1<=n<=5,0<=s<=5,1<=a,b<=5;
对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;
对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;
对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;
对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。
解题思路:
ps:我用的是网上普遍的dp方法,但是后台数据只能通过90%,提交网上一些大佬的代码也是只能通过90%,另一个样例始终超时。
dp思路:也是看着大佬的博客一步步弄清的。(http://blog.csdn.net/wr132/article/details/43861145)
但是我觉得还是有些地方晦涩了点,所以自己瞎写了一通。
1、首先我们将每个+a和-b操作都当做操作p,所以易知
设首项为x,可以得到一个等式x+(x+P)+(x+2P)+...+(x+(n-1)P)=s,将这个式子整理一下,就是
nx+P+2P+...+(n-1)P=s
,即(s-(P+2P+...+(n-1)P))/n=x。
2、所以我们确定了a操作的次数就知道了b操作的次数。于是我们记前 i 个元素所进行的a操作数 j 所能够组成的方案数为dp[ n ] [n*(n-1) /2 ]。即数组大小为dp[ n ] [n*(n-1) /2 ]。
(空间复杂度咱先不管,后面处理,先搞出思路来)
3、初始化dp数组,显然当 i !=0,j=0时,dp[ i ] [ 0] =1;当 i =0时 ,dp [ 0] [ j ]=0;
4、初始化好了,状态转移方程为
(1)、i>j时,因为每一个元素i权值都是i,即dp[i][j]=dp[i-1][j]。(ps:个人理解也不是很透,可能这就是dp的妙处吧)
(2)、i<=j时,第i个元素的权值是小于等于和的,所以可以用,也可以不用,如果不用,那么就是dp[i-1][j],如果用,就是dp[i-1][j-i],这个有点类似于01背包,所以
dp[i][j]=dp[i-1][j]+dp[i-1][j-i]。
(2)、i<=j时,第i个元素的权值是小于等于和的,所以可以用,也可以不用,如果不用,那么就是dp[i-1][j],如果用,就是dp[i-1][j-i],这个有点类似于01背包,所以
dp[i][j]=dp[i-1][j]+dp[i-1][j-i]。
5、显然不可能开dp[n][n*n]的数组,于是我们进行内存压缩!!! 这就是last变量存在的意义!!!
代码:
1 #include<iostream> 2 #include<bits/stdc++.h> 3 #define ll long long 4 using namespace std; 5 const ll MOD=100000007; 6 ll n,s,a,b; 7 ll dp[2][1060*1060]; 8 ll last=0; 9 void get_dp(){ 10 memset(dp,0,sizeof(dp)); 11 dp[0][0]=1; 12 for(ll i=1;i<n;i++){ 13 last=1-last; 14 for(ll j=0;j<=i*(i+1)/2;j++){ 15 if(i>j){ 16 dp[last][j]=dp[1-last][j]; 17 }else{ 18 dp[last][j]=(dp[1-last][j-i]+dp[1-last][j])%MOD; 19 } 20 } 21 } 22 } 23 int main(){ 24 cin>>n>>s>>a>>b; 25 get_dp(); 26 ll cnt=0; 27 for(ll i=0;i<=n*(n-1)/2;i++){ 28 ll tmp=s-a*i+(n*(n-1)/2-i)*b; 29 if(tmp%n==0){ 30 cnt=(cnt+dp[last][i])%MOD; 31 } 32 } 33 cout<<cnt<<endl; 34 return 0; 35 }