- 博客(50)
- 资源 (1)
- 收藏
- 关注
原创 Batch Normalization
总体把握内部协变量转移(internal covariate shift):由于前面网络层的参数发生改变,导致每层网络的输入分布在训练中会发生变化.由于分布变化所以要求较低的学习率和仔细的参数初始化,这造成有饱和非线性模型的模型训练非常困难.内部协变量转移 白化 平移缩放归一化值白化(whitened)目的:修正层输入的均值和方差,减少梯度对参数或者初始值的依赖,允许使用较高学习...
2018-10-10 16:57:42
913
原创 SSR-Net(Soft Stagewise Regression Network)
摘要1.受DEX启发: 将年龄预测回归问题变为多分类问题 2.由粗到细策略,每个阶段执行部分年龄分类,任务量少(Stagewise):每个阶段预测类别少,产生更小参数和更紧凑的模型 3.解决量化年龄问题,引入动态范围,让每个bin可以平移和缩放(Soft ):允许bin根据输入来进行平移和缩放 4.模型大小可以达到0.32M损失函数在训练时,最小化平均误差函数,这里,年龄预测...
2018-09-25 11:44:38
9059
2
原创 Model selection and evaluation
查准率、查全率与F1对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例(true positive) :真的正样本,本来就是正样本 假正例(false positive) :假的正样本,其实是负样本 真反倒(true negative) :真的负样本,本来就是负样本 假反例(false negative) 假的负样本,其实是正样本显然有TP+FP+TN+FN=...
2018-09-14 16:57:07
467
原创 Random Forest
自助采样法给定包含m 个样本的数据集D , 我们对它进行采样产生数据集D':每次随机从D 中挑选一个样本将其拷贝放入D' 再将该样本放回初始数据集D 中,使得该样本在下次采样时仍有可能被采到; 这个过程重复执行m 次,我们就得到了包含m个样本的数据集D'通过自助来样,初始数据集D 中约有36.8% 的样本未出现在采样数据集D'中.于是我们可将D' 用作训练集,用作测试集;这样我...
2018-09-10 12:13:23
1786
原创 AdaBoost
整体把握大多数提升方法是改变训练数据的概率分布(权值分布).提高前一轮被错误分类的样本的权重,降低正确分类样本的权重;对于无法接受带权样本的基学习器,可以采用“重采样” 加权多数表决,加大分类误差小的弱分类器权重算法流程输入:训练数据集D,输出:最终分类器G(x)1.初始化训练数据的权值分布: 2.对M = 1,2,...,m(a)使用具有权值分布的训练数据集学习,...
2018-08-30 16:29:29
1995
原创 Linear Model(Linear regression && Logistic Regression)
总体把握给定d个属性描述的示例,其中为x在第i个属性上的取值,线性模型试图学得一个通过属性的线性组合来进行预测的函数,许多非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射获得.一.Linear regression线性回归致力于, 均方误差是回归任务中最常用的性能度量.基于均方误差最小化来进行模型求解的方法称为“最小二乘法”,线性回...
2018-08-28 10:57:01
735
原创 bash shell 编辑器
vi/vim 命令模式 在命令模式下按下:(英文冒号)就进入了底线命令模式。按ESC键可随时退出底线命令模式。底线命令 q 如果未修改缓冲区数据,退出 q! 取消所有对缓冲区数据的修改并退出 w filename 将文件保存到另一个文件中 wq 将缓冲区数据保存到文件中并退出 set nu 显示行号 命令模式 输入 i或In...
2018-08-27 11:46:37
592
原创 bash shell 包管理系统
包管理系统(PMS)Linux发行版都采用了某种形式的包管理系统来控制软件和库的安装。PMS利用一个数据库来记录各种相关内容:Linux系统上已安装了什么软件包; 每个包安装了什么文件; 每个已安装软件包的版本。软件包存储在服务器上,可以利用本地Linux系统上的PMS工具通过互联网访问。这些服务器称为仓库(repository)。可以用PMS工具来搜索新的软件包,或者是更新系统上...
2018-08-27 11:46:09
593
原创 naïve Bayes
总体把握关键词:类条件概率密度/似然(likelihood),贝叶斯决策论,极大似然估计,属性条件独立性假设判别概率/后验概率 =>> 先验概率+类条件概率密度 =>> 概率密度估计(最大似然准则) =>> 属性条件独立判别式模型:给定x,通过直接建模来预测c,如决策树,神经网络,SVM生成式模型:给定x,先对联合概率分布建模,然后由此获得...
2018-08-27 11:41:36
1460
原创 Vmware Fusion 10.1 环境下安装centos 7 以及配置图形界面
前车之鉴Vmware Fusion 是mac系统上的虚拟环境软件, 这里建议从官网上下载,别的资源可能会出现诸如“打不开 /dev/vmmon: 无此文件或目录”的问题,Fusion安装可以参考百度经验, 这里注意运行到步骤6时,需要确认安装位置(直接选择20G即可); 网络和主机名(turn on 即可), 然后“开始安装”变为蓝色可以安装.注意:root密码和用户设置为了...
2018-08-22 15:10:06
1157
1
机器学习实战-Peter Harrington
2018-09-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅