AP微积分极限考点总结及解析

这篇博客总结了AP微积分中关于极限和连续性的重点内容,包括函数的定义和性质、幂函数、指数与对数、三角函数、复合与反函数、参数和极坐标函数、函数图像变换。讲解了如何计算极限,特别是水平和竖直渐近线,以及洛必达法则。同时介绍了连续性的定义、不连续点的分类,以及极限定理在求解最值、介值和零点问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ce40749d8b4a283156395681ae154d23.jpeg

AP微积分极限考点总结

以求极限值和渐近线为主,大约5道选择题

A.求函数渐近线

水平的和竖直的各自用极限是怎么定义计算的,基础还是极限计算。不要死背公式,回到逻辑上去看。

(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)

(2)幂函数(一次函数、二次函数,多项式函数和有理函数)

(3)指数和对数(指数和对数的公式运算以及函数性质)

(4)三角函数和反三角函数(运算公式和函数性质)

(5)复合函数,反函数

(6)参数函数,极坐标函数,分段函数

(7)函数图像平移和变换

B.Limit and Continuity极限和连续

基本计算:

- 一些基本函数的极限结论要熟悉,如 y=e^x在x 分别趋向于正无穷或者负无穷时的极限,y=sinx在 x 趋向无穷时的极限,等等;

- 基本的加减乘除原则;

- sinx在x趋向于∞时 有理函数类型(自变量趋向于无穷时,直接看最高项次方的关系。两个极限小公式(一个是sinx/x,一个是结果记为e的那个);

- 洛比达法则(L’ Hopital’s Rule)AB不考,BC考极限喜欢考它。

闭区间连续函数的性质定理:

最值定理(Extreme Value Theorem)

介值定理(Intermediate Value Theorem)

零点定理(Zero Point Theorem)

记住这三个定理的内容,理解其逻辑,并会联系Mean Value Theorem。

分类:

(1)极限的定义和左右极限

(2)极限的运算法则和有理函数求极限

(3)两个重要的极限

(4)极限的应用-求渐近线

(5)连续的定义

(6)三类不连续点(移点、跳点和无穷点)

(7)最值定理、介值定理和零值定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值