普通网友
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
27、基于深度强化学习的隐私保护任务卸载策略研究
本文研究了基于深度强化学习的隐私保护任务卸载策略,在多用户边缘-云协作的移动边缘计算系统中,联合优化能量消耗、延迟和隐私保护级别。通过结合Q-learning算法和神经网络,提出了一种深度Q网络(DQN)的隐私保护任务卸载策略,以解决传统Q-learning在大规模状态和动作空间中的局限性。实验结果表明,该方法能够在降低延迟和能耗的同时有效提升隐私保护水平,并优于现有的基线方法。原创 2025-07-23 04:11:20 · 38 阅读 · 0 评论 -
26、基于学习的多任务能量延迟与隐私联合优化
本文探讨了在边缘计算环境中,如何通过深度强化学习实现多任务计算任务卸载过程中的能量延迟与隐私联合优化。文章分析了隐私泄露的两种主要威胁:使用模式隐私和位置隐私,并提出了系统模型和优化问题,以最大化隐私级别并最小化成本。通过构建马尔可夫决策过程和深度Q网络(DQN),采用Q学习算法解决优化问题,并展示了优化效果和未来研究方向。原创 2025-07-22 15:30:33 · 37 阅读 · 0 评论 -
25、移动边缘计算中的负载均衡与隐私优化
本博文围绕移动边缘计算(MEC)系统中的关键问题,探讨了负载均衡与隐私优化的联合策略。第一部分基于Lyapunov优化框架,提出了能量收集场景下的任务分配最优解,并通过仿真验证了策略在降低能耗和队列冗余方面的有效性。第二部分聚焦多用户边缘-云协作MEC系统,提出基于深度强化学习(深度Q网络,DQN)的隐私保护任务卸载策略,以解决能量消耗、时间延迟和用户隐私之间的联合优化问题。研究构建了本地计算与卸载模型,设计了位置隐私和使用模式隐私的度量方法,并通过仿真验证了所提方法在能耗、延迟和隐私保护方面的优越性能。研原创 2025-07-21 10:27:40 · 42 阅读 · 0 评论 -
24、能量收集移动边缘计算的负载均衡
本文研究了能量收集支持的移动边缘计算(MEC)系统中的负载均衡问题。通过建立计算任务、任务排队、本地执行、MEC服务器执行和能量收集的综合模型,将负载均衡形式化为一个优化问题,目标是最小化能耗和队列冗余。基于Lyapunov优化算法并引入扰动参数,推导出最优负载均衡策略。模拟结果表明,该策略在能耗、队列冗余和延迟方面均优于传统策略。未来的研究方向包括多服务器协作、动态环境适应以及机器学习与负载均衡的深度融合。原创 2025-07-20 13:36:30 · 40 阅读 · 0 评论 -
23、基于深度强化学习的延迟与隐私联合优化仿真研究
本文研究了基于深度强化学习的任务卸载算法,在多用户移动边缘计算(MEC)系统中实现计算速率与隐私保护的联合优化。通过设计一种在线深度强化学习算法解决卸载决策问题,并通过大量仿真验证了该算法在收敛性、卸载决策、隐私保护水平和计算速率等方面的优势。实验结果表明,该方法相比现有方法(如DROO、Neural Network以及多种基线方法)能够在保护用户隐私的同时保持较高的计算性能。原创 2025-07-19 15:04:53 · 26 阅读 · 0 评论 -
22、基于深度强化学习的延迟与隐私联合优化
本文提出了一种基于深度强化学习的延迟与隐私联合优化算法,通过构建本地计算模型、边缘计算模型和隐私保护模型,将隐私保护与计算速率的平衡问题转化为优化问题。该方法通过引入拉格朗日乘子和深度神经网络,有效解决了混合整数规划非凸问题,并在实验中展示了其在计算速率和隐私保护方面的优越性能。原创 2025-07-18 10:11:15 · 42 阅读 · 0 评论 -
21、基于深度强化学习的MEC任务卸载延迟与隐私联合优化方案
本文围绕多接入边缘计算(MEC)系统中任务卸载的延迟与隐私保护联合优化问题展开研究。分析了MEC系统中任务卸载过程存在的位置隐私和使用模式隐私泄露风险,并总结了现有工作的不足。针对卸载决策中面临的非凸混合整数规划和连续信道增益处理难题,提出了一种基于深度强化学习的隐私感知任务卸载方案,通过构建系统模型、形式化隐私保护模型、定义联合优化问题并设计优化算法,实现了计算速率和隐私保护的平衡。实验结果表明,该方案在降低延迟的同时有效提升了隐私保护水平,为MEC系统中的高效任务卸载与隐私保护提供了新思路。原创 2025-07-17 15:16:09 · 44 阅读 · 0 评论 -
20、无线定位与多用户MEC系统中的隐私保护技术
本文探讨了无线定位和多用户移动边缘计算(MEC)系统中的隐私保护技术。针对无线定位领域,提出了基于合理虚拟位置的隐私保护算法(LPPD),分析了其在不同设备、环境以及更大室内场景下的隐私保护效果,并与VANET场景中的现有方案进行了比较。对于多用户MEC系统,提出了一种结合延迟和隐私保护的联合优化方案,利用深度强化学习实现伪装的卸载决策和冗余任务发送,以提高隐私保护效果。文章还总结了LPPD算法的优势,并展望了未来需要应对的挑战,包括更复杂的攻击者、新的攻击类型以及方案性能优化。原创 2025-07-16 11:33:10 · 65 阅读 · 0 评论 -
19、Wi-Fi 定位隐私保护系统的实现与性能评估
本文介绍了一个隐私保护的Wi-Fi定位系统LPPD,并对其性能进行了评估。系统通过生成虚拟Wi-Fi信号实现k-匿名,保护用户位置隐私。评估结果表明,LPPD在k-匿名成功率、熵等隐私保护指标上优于现有方法DLS和PriWFL,同时在计算和通信成本之间取得了良好的平衡。文章还分析了隐私参数k、AP数量等因素对定位误差、时间成本和带宽成本的影响,为实际应用提供了参数选择建议。原创 2025-07-15 10:10:25 · 31 阅读 · 0 评论 -
18、Wi-Fi定位中利用可信虚拟位置保护隐私的算法解析
本文详细介绍了一种基于可信虚拟位置的Wi-Fi定位隐私保护算法。该算法通过寻找抗攻击的置信区域(CR),选择可信的虚拟位置,并将其映射为虚拟信号,从而有效防止用户位置隐私泄露。文章从理论分析到实际应用,系统解析了算法的实现步骤与性能优势,并探讨了其在现实场景中的挑战与改进方向。原创 2025-07-14 11:33:49 · 34 阅读 · 0 评论 -
17、Wi-Fi 定位中利用可信虚拟位置保护隐私
本文提出了一种用于Wi-Fi定位场景中的隐私保护算法LPPD,通过引入可信虚拟位置来抵抗时空相关性攻击。该方法无需依赖可信第三方,同时具有轻量级、高效的特点,解决了传统加密方法计算和通信开销大、易受攻击的问题。文章还介绍了算法流程、关键技术以及系统实现和测试结果,验证了LPPD算法在保护用户位置隐私方面的有效性。原创 2025-07-13 15:35:30 · 49 阅读 · 0 评论 -
16、P.3-LOC:用于室内定位的隐私保护框架
本文介绍了一种名为 P.3-LOC 的隐私保护框架,专为室内定位系统设计。该框架通过差分隐私技术,有效保护用户位置隐私和定位服务器的数据隐私,同时兼顾定位精度和系统性能。文章详细分析了不同定位方法下的误差表现、计算与通信成本,并通过多个定理证明了框架的隐私保护能力和高效性。此外,P.3-LOC 还具备广泛的适用性和可调控性,为未来隐私保护的室内定位系统提供了创新性的解决方案。原创 2025-07-12 12:52:13 · 32 阅读 · 0 评论 -
15、P3 - LOC:室内定位的隐私保护框架解析
P3-LOC是一种隐私保护的室内定位框架,通过数据签名、隐藏和有效的传输策略,结合差分隐私机制,实现了用户位置隐私和定位数据效用的平衡。该框架在指纹基、模型基和航位推算基等多种定位技术中表现出色,具有良好的可扩展性和实际应用潜力。原创 2025-07-11 09:34:28 · 35 阅读 · 0 评论 -
14、P.3-LOC:用于室内定位的隐私保护框架
P.3-LOC是一种用于室内定位系统的隐私保护框架,旨在解决用户位置隐私和定位服务器(LS)数据隐私的安全隐患。通过结合k-匿名性和差分隐私技术,P.3-LOC实现了在不依赖底层定位算法的情况下,对用户位置和LS数据的双重隐私保护。该框架采用分布式设计,支持用户自定义隐私参数,同时具有低计算和通信开销的特点,适用于大规模应用场景。原创 2025-07-10 15:18:06 · 39 阅读 · 0 评论 -
13、轻量级隐私保护的WiFi指纹室内定位方案解析
本文介绍了一种轻量级且具备隐私保护功能的WiFi指纹室内定位方案LWP2。该方案通过选取部分接入点(AP)计算距离,使恶意用户难以破解指纹数据库,从而保障数据安全。同时,LWP2在计算效率、带宽成本和定位精度方面均表现出优越性,适用于商场、医院、企业园区等多种室内定位场景。文章还对LWP2的性能进行了全面评估,并与PriWFL和DMA方案进行了对比分析,验证了其高效性和隐私保护能力。原创 2025-07-09 14:50:17 · 19 阅读 · 0 评论 -
12、基于WiFi指纹的室内定位轻量级隐私保护方案
本文介绍了一种基于WiFi指纹的室内定位轻量级隐私保护方案LWP2。该方案通过利用Paillier密码系统在密文空间的计算特性,结合超定线性方程组的特殊结构,在保护用户位置隐私的同时保障定位服务器的数据安全。LWP2不仅降低了计算和通信成本,还通过多指纹估计和最小均方误差方法提升了定位精度。性能分析和与其他方案的比较表明,LWP2在隐私保护、计算效率和定位精度方面均具有显著优势,适用于商场导航、医院定位等各类室内场景。原创 2025-07-08 14:27:24 · 49 阅读 · 0 评论 -
11、语音数据发布中的隐私保护与性能评估
本文探讨了语音数据发布中的隐私保护与性能评估方法。通过使用基尼指数生成词汇列表,并结合TF-IDF算法识别和处理关键词,实现对语音内容的清洗。同时,采用语音转换技术降低语音隐私泄露风险,并通过贪心算法平衡数据集描述的隐私与效用。最终,实验评估显示该方法在隐私保护和数据效用之间实现了良好的权衡,并引入了语音内容与说话者声音相关性作为新的隐私风险指标。原创 2025-07-07 16:21:20 · 19 阅读 · 0 评论 -
10、提升语音数据发布中的隐私保护
本文探讨了在语音数据发布过程中如何提升隐私保护水平。随着语音技术的广泛应用,语音数据泄露带来的隐私风险日益突出。文章提出了通过清理语音数据的三个维度(数据集描述、语音内容、说话者声音)来降低隐私泄露风险的方法,并定义了隐私风险和效用损失的量化指标。通过将问题建模为优化问题,研究者可以在隐私保护与数据效用之间实现平衡。文章还详细介绍了获取年龄相关词汇列表的机器学习方法,以及清理语音数据的具体操作流程。最后,提出了综合评估与优化策略,确保在降低隐私风险的同时最小化数据效用损失。原创 2025-07-06 11:30:33 · 41 阅读 · 0 评论 -
9、数据聚合与语音数据发布中的隐私保护技术
本文探讨了在数据聚合和语音数据发布过程中面临的隐私保护挑战及相关解决方案。重点介绍了DAML协议在基于机器学习的数据聚合中的应用,分析了其通信成本的影响因素,并阐述了语音数据发布中隐私泄露的风险及现有保护措施的不足。同时,提出了一套隐私保护协议,通过量化风险和效用损失、制定数据清理方法,实现了隐私保护与数据效用的平衡。实验验证表明,这些技术能够有效保护用户隐私,为数据安全与隐私保护领域的发展提供了新的思路。原创 2025-07-05 12:13:24 · 26 阅读 · 0 评论 -
8、DAML:基于机器学习的数据聚合实用安全协议
本文介绍了一种基于机器学习的数据聚合实用安全协议DAML,该协议通过SSVP和SDA两个子协议有效保障数据聚合过程中参与者的数据隐私。SSVP用于验证参与者提交的参数更新,SDA则分为SDA−和SDA两个版本,分别应对恶意参与者退出和勾结攻击的情况。文章详细分析了协议的安全性和性能,并提供了实际应用中的参数调整建议。原创 2025-07-04 13:15:31 · 32 阅读 · 0 评论 -
7、DAML:基于机器学习的数据聚合实用安全协议
DAML 是一种基于机器学习的数据聚合实用安全协议,通过秘密共享验证协议 SSVP 和安全数据聚合协议 SDA,解决了隐私泄露和恶意攻击等问题,确保聚合结果的准确性和可靠性。原创 2025-07-03 14:07:45 · 30 阅读 · 0 评论 -
6、合成隐私保护轨迹:借助社交网络增强合理性
本文介绍了一种基于社交网络增强合理性的隐私保护轨迹合成方法 .W 3-tess。与传统方法相比,.W 3-tess 仅处理用户朋友的位置信息,降低了计算成本,同时提升了隐私保护和数据实用性。文章还从时间、空间和社会行为三个维度证明了该方法满足 (ε, δ) - 差分隐私,具备较强的理论保障。与其他隐私保护方法相比,.W 3-tess 能有效抵御基于社会关系的去匿名化攻击,是一种轻量级且高效的位置隐私保护方案。原创 2025-07-02 10:44:44 · 21 阅读 · 0 评论 -
5、隐私保护轨迹合成:W3 - tess算法的理论分析与性能评估
本文详细分析了W3-tess算法在隐私保护和轨迹数据效用方面的理论基础与性能表现。通过差分隐私理论,探讨了W3-tess算法如何在不注入噪声的情况下实现隐私保护,并研究了参数k、ρ、ε和δ对隐私保护和数据效用的影响。同时,通过在真实数据集loc-Gwalla和loc-Brightkite上的实验评估,验证了W3-tess在抵御推理攻击和基于社交关系的去匿名化攻击方面的优越性,并证明其在多种地理数据分析任务中保持较高的数据效用。此外,文章还评估了W3-tess的计算成本,表明其在隐私保护和效率之间实现了较好的原创 2025-07-01 13:46:37 · 27 阅读 · 0 评论 -
4、隐私保护轨迹合成:利用社交增强合理性
本文介绍了一种名为.W 3-tess的隐私保护轨迹合成方法,通过将用户轨迹映射到时间、空间和社会三个维度,结合社会行为和非社会行为建模,合成具有相似统计特征的轨迹,从而在保护用户位置隐私的同时保证轨迹数据的效用。文章详细阐述了.W 3-tess的设计原理、差分隐私机制以及其在地理数据分析任务中的应用优势,并展望了其在未来多领域的潜在应用。原创 2025-06-30 13:06:59 · 17 阅读 · 0 评论 -
3、位置数据隐私保护与攻击评估:LocMIA与W3 - tess技术解析
本文深入探讨了两种位置数据隐私保护与攻击评估的关键技术:LocMIA和W3-tess。LocMIA通过二元分类器实现对聚合位置数据中受害者成员身份的推断,揭示了聚合数据可能存在的隐私泄露风险;而W3-tess则通过结合时间、空间和社交三维行为建模,合成更具合理性的隐私保护轨迹,弥补了现有轨迹合成方法忽略社交关系影响的不足。文章分析了两种技术的操作流程、性能指标及面临的挑战,并展望了未来在隐私保护领域的应用与发展。原创 2025-06-29 12:12:36 · 29 阅读 · 0 评论 -
2、LocMIA:针对聚合位置数据的成员推理攻击技术解析
本文介绍了LocMIA技术,一种针对聚合位置数据的成员推理攻击方法。该技术通过合成受害者的轨迹数据并训练二元分类器,能够在黑盒场景下推断受害者是否参与了数据聚合。文章详细解析了LocMIA的核心步骤、用户移动模型、移动相似度计算、轨迹合成算法以及二元分类器的构建。此外,还通过真实数据集Gowalla对LocMIA的性能进行了评估,结果显示该方法的攻击准确率显著高于随机猜测,强调了在数据聚合过程中加强用户隐私保护的重要性。原创 2025-06-28 09:42:24 · 33 阅读 · 0 评论 -
1、分布式系统中位置数据聚合的成员推理攻击与隐私保护
随着物联网的快速发展,大量用户的位置数据被聚合用于各种应用,但这也带来了成员隐私泄露的风险。本文提出了一种新的攻击系统LocMIA,用于在不依赖受害者精确位置信息的情况下,对聚合的位置数据发起成员推理攻击。通过合成受害者的位置数据并训练二元分类器,LocMIA能够有效推断受害者的轨迹数据是否参与了聚合,从而揭示位置数据聚合中的隐私问题。实验结果表明,LocMIA在弱攻击知识水平下仍然具有较高的攻击性能。原创 2025-06-27 14:59:35 · 39 阅读 · 0 评论