普通网友
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
22、自动化机器学习部署与持续训练全流程解析
本文详细解析了基于AWS CDK的机器学习软件开发生命周期(MLSDLC)全流程,涵盖从应用部署、构建、测试、生产部署到维护的自动化实践。重点介绍了如何通过CodePipeline实现CI/CD/CT(持续集成/持续交付/持续训练)一体化流程,利用Airflow在新数据到达时自动触发模型再训练,并结合SageMaker Model Monitor实现模型漂移检测。文章还探讨了持续训练的优势与挑战,并提出了数据质量保障、资源优化和模型监控等应对策略,为构建高效、可靠的机器学习系统提供了完整的技术路线图。原创 2025-10-10 00:10:36 · 36 阅读 · 0 评论 -
21、机器学习软件开发生命周期的持续集成、部署和训练
本文介绍了如何在AWS平台上实现机器学习软件开发生命周期(MLSDLC)的持续集成、部署和训练。通过使用Cloud9开发环境、CodePipeline、SageMaker、Lambda、API Gateway和CloudFront等服务,构建了一个端到端自动化的ML系统。文章详细描述了从构建集成、测试与生产工件,到自动化CI/CD管道、部署生产环境,再到基于新数据进行连续模型训练的完整流程,帮助开发者实现高效的MLOps实践。原创 2025-10-09 09:24:05 · 39 阅读 · 0 评论 -
20、机器学习软件开发生命周期(MLSDLC)中的角色与安全考量
本文深入探讨了机器学习软件开发生命周期(MLSDLC)中各团队的角色与安全考量,涵盖ML团队、数据团队、安全团队和平台团队的协作流程。通过构建持续训练(CT)工件、集成CDK管道、实施CI/CD/CT自动化流程,并结合MWAA与Airflow实现工作流编排,展示了端到端机器学习应用的自动化部署方案。同时,强调在数据、代码和网站层面的安全实践,提出系统化的安全审查机制,确保ML应用在生产环境中的安全性与合规性。最后总结了关键技术点并展望了MLSDLC的未来发展方向。原创 2025-10-08 15:56:09 · 33 阅读 · 0 评论 -
19、机器学习软件开发生命周期(MLSDLC)入门
本文介绍了机器学习软件开发生命周期(MLSDLC)的基本框架,涵盖前端开发、平台搭建、ML与数据工程团队的协作流程。重点讲解了如何利用AWS服务(如SageMaker特征存储、Step Functions和CDK)实现特征管理、模型训练与自动化工作流构建,并通过实践案例展示鲍鱼年龄预测系统的开发全过程。文章还强调了数据质量、模型监控与安全合规的重要性,为构建高效、可靠的机器学习应用提供了系统化方法论。原创 2025-10-07 12:36:38 · 44 阅读 · 0 评论 -
18、利用AWS技术构建机器学习工作流与软件开发生命周期实践
本文详细介绍了如何利用AWS技术构建机器学习工作流与实现机器学习软件开发生命周期(MLSDLC)的实践。通过Apache Airflow、SageMaker、CodePipeline和CDK等服务,展示了从数据更新、模型训练到自动化部署的完整CI/CD流程。文章以ACME Fishing Logistics网站为例,阐述了平台工程师、应用所有者和开发团队的协作模式,并对比了MLSDLC与传统SDLC的关联。同时提供了资源清理建议和持续优化方向,帮助团队实现高效、可扩展的机器学习应用交付。原创 2025-10-06 12:10:46 · 24 阅读 · 0 评论 -
17、构建以数据为中心的工作流:Airflow DAG 与合成数据生成
本文介绍了如何构建以数据为中心的机器学习工作流,涵盖使用Airflow DAG自动化SageMaker模型训练、评估与部署的全过程,并利用CTGAN生成合成鲍鱼调查数据。通过Glue爬虫与ETL任务实现数据集成,结合PythonOperator调用SageMaker SDK完成模型生命周期管理,最后基于RMSE阈值决策模型是否上线。文章还提供了流程图解、代码实现及优化建议,助力构建高效、可复用的自动化机器学习流水线。原创 2025-10-05 14:41:13 · 37 阅读 · 0 评论 -
16、利用 Apache Airflow 自动化机器学习流程
本文介绍了如何利用 Apache Airflow 和 Amazon MWAA 构建自动化的机器学习流程。从 MWAA 环境的部署与配置,到使用 AWS Glue 开发数据 ETL 工件,再到创建 Airflow DAG 实现端到端的自动化工作流,涵盖了数据预处理、模型训练准备、任务调度与监控等关键步骤。通过集成 AWS 多项服务,实现了高效、可扩展的 ML 流程自动化,为后续的模型训练与优化奠定了基础。原创 2025-10-04 10:53:27 · 26 阅读 · 0 评论 -
15、自动化机器学习流程:从 AWS Step Functions 到 Apache Airflow
本文介绍了如何通过 AWS Step Functions 和 Apache Airflow 构建自动化的机器学习流程。首先使用 Step Functions 将 ML 工作流集成到 CI/CD 管道中,实现模型的持续集成与部署;随后引入以数据为中心的自动化策略,利用 Amazon Managed Workflows for Apache Airflow(MWAA)编排复杂的数据处理任务,实现数据驱动的模型更新。文章详细展示了从环境配置、DAG 开发到工作流监控的完整流程,帮助用户构建高效、可扩展的 MLOp原创 2025-10-03 12:25:38 · 34 阅读 · 0 评论 -
14、使用 AWS Step Functions 自动化机器学习流程
本文详细介绍了如何使用 AWS Step Functions 和 SageMaker 构建自动化的机器学习流程。从部署 CI/CD 管道、创建数据预处理和模型训练任务,到模型评估、结果分析与注册,完整展示了基于 AWS Step Functions Data Science SDK 的 ML 工作流构建过程。通过状态机组编排各步骤,并结合 CodePipeline 实现持续集成与交付,实现了端到端的机器学习自动化。文章还提供了单元测试、错误处理、优化建议及未来发展趋势,帮助开发者高效构建可复用、可监控的 M原创 2025-10-02 13:28:53 · 35 阅读 · 0 评论 -
13、利用 AWS Step Functions 实现机器学习流程自动化
本文介绍了如何利用 AWS Step Functions 实现机器学习流程的自动化,涵盖状态机的定义与优化、Step Functions Data Science SDK 的应用,以及使用 AWS CDK 构建完整的 CI/CD 管道。通过可视化工具和编程方式相结合,ML 从业者和开发团队可以高效协作,实现从模型训练到部署的端到端自动化,提升开发效率与系统可靠性。原创 2025-10-01 15:11:17 · 35 阅读 · 0 评论 -
12、自动化机器学习模型部署与优化
本文详细介绍了自动化机器学习模型的部署与优化流程,涵盖从Jupyter Notebook启动、模型工件生成、Docker容器化、CI/CD管道构建到SageMaker端点部署的完整过程。针对现有流程中ML与DevOps协作复杂的问题,提出基于AWS Step Functions和数据科学SDK的优化方案,通过无服务器工作流实现数据处理、模型训练、评估与部署的自动编排,提升自动化水平与团队协作效率。同时介绍了相关资源的构建方法,并展望了未来在机器学习自动化领域的应用前景。原创 2025-09-30 12:48:34 · 17 阅读 · 0 评论 -
11、机器学习模型的持续集成与部署实践
本文详细介绍了如何在AWS平台上构建机器学习模型的持续集成与持续部署(CI/CD)管道。通过使用AWS CDK、CodeCommit、CodeBuild和SageMaker等服务,实现了从模型开发、训练、评估到生产部署的全流程自动化。文章涵盖了环境搭建、管道编码、模型工件构建、流程优化及监控维护等关键步骤,并提供了完整的实践流程图与阶段总结,帮助机器学习从业者高效、可靠地将模型投入生产环境。原创 2025-09-29 12:19:23 · 37 阅读 · 0 评论 -
10、使用 AWS 实现机器学习的 CI/CD 自动化
本文介绍了如何利用 AWS 服务构建云原生的机器学习 CI/CD 自动化管道。通过集成 SageMaker、CodePipeline、CodeBuild 和 CodeCommit 等服务,实现模型的持续集成与持续交付。内容涵盖开发环境准备、管道创建、模型训练与评估、自动化部署及跨团队协作,并强调 MLOps 实践和模型性能监控的重要性,帮助开发者高效迭代和部署机器学习模型。原创 2025-09-28 16:50:10 · 23 阅读 · 0 评论 -
9、利用AutoGluon处理图像数据及CI/CD在机器学习中的应用
本文介绍了如何利用AutoGluon高效处理图像数据,并结合SageMaker降低AWS成本,实现自动化模型训练与评估。同时探讨了CI/CD在机器学习中的应用,涵盖从模型构建、测试、发布到部署和监控的完整MLOps流程,分析了其优势与潜在问题及应对策略,展望了智能化自动化、跨平台集成和安全机制强化等未来发展方向。原创 2025-09-27 13:56:43 · 21 阅读 · 0 评论 -
8、使用AutoGluon进行机器学习实验:表格数据与图像数据的实践
本文介绍了如何使用AutoGluon进行自动化机器学习实验,涵盖表格数据和图像数据的处理流程。针对表格数据,通过SageMaker集成AutoGluon完成数据预处理、模型训练与评估;对于图像数据,构建支持GPU的自定义容器,利用CNN进行图像分类任务。文章详细展示了实验步骤、参数配置、训练过程及结果评估,并提供了实用建议,帮助用户高效使用AutoGluon实现自动化建模。原创 2025-09-26 16:33:46 · 37 阅读 · 0 评论 -
7、自动化机器学习模型开发:SageMaker Autopilot与AutoGluon的应用
本文介绍了如何使用Amazon SageMaker Autopilot和AutoGluon实现自动化机器学习模型开发。SageMaker Autopilot适用于表格数据的自动建模,支持实验分析、模型比较与部署;而AutoGluon作为开源库,扩展了对图像、文本等复杂数据类型的支持。文章详细讲解了Autopilot实验分析、最佳模型部署与资源清理,并通过自定义Docker容器在SageMaker Studio中构建AutoGluon环境,实现表格与图像数据的自动化建模流程。最后提供了工具选择建议与成本控制实原创 2025-09-25 10:12:13 · 25 阅读 · 0 评论 -
6、使用SageMaker Autopilot自动化机器学习模型开发
本文深入介绍了Amazon SageMaker Autopilot如何自动化机器学习模型开发的全过程,涵盖数据预处理、特征工程、模型调优、候选模型选择与部署等关键步骤。通过Studio UI和Python SDK两种方式启动实验,并结合实际应用场景提出应用策略与优化技巧。文章还探讨了常见问题的解决方法、与其他AWS服务(如Lambda、Redshift、IoT Core)的集成架构,以及未来在智能自动化和多模态数据处理方面的发展趋势,为新手和资深从业者提供了全面的实践指南。原创 2025-09-24 11:44:04 · 21 阅读 · 0 评论 -
5、使用 SageMaker Autopilot 自动化机器学习模型开发
本文介绍了如何使用 AWS SageMaker Autopilot 实现机器学习模型开发的自动化。从技术要求、AWS AI/ML 生态系统分层结构,到 SageMaker Autopilot 的核心组件和工作流程,详细展示了通过 Studio 界面创建实验、训练模型、部署最佳模型并进行预测的全过程。同时涵盖了模型监控与优化策略,帮助开发者高效构建高性能的生产级机器学习模型。原创 2025-09-23 14:22:06 · 22 阅读 · 0 评论 -
4、端到端机器学习流程示例及自动化解决方案
本文介绍了端到端机器学习流程的关键环节,包括模型评估、调优、部署与监控,并探讨了传统流程的复杂性与迭代挑战。通过鲍鱼年龄预测案例,展示了如何基于业务目标判断模型是否具备生产就绪能力,并详细说明了模型过拟合识别与超参数调整策略。文章重点阐述了AutoML在简化机器学习流程中的作用,结合AWS多项服务如SageMaker Autopilot、AutoGluon、CodePipeline、Step Functions和MWAA,实现了从数据准备到模型部署的自动化流水线,提升了机器学习项目的可重复性、可靠性与效率。原创 2025-09-22 13:28:43 · 34 阅读 · 0 评论 -
3、端到端机器学习流程示例:鲍鱼年龄预测
本文介绍了一个完整的端到端机器学习流程,以鲍鱼年龄预测为例,涵盖了从数据预处理、模型构建、训练到评估的全过程。通过使用神经网络(DNN)进行建模,并采用均方误差(MSE)和平均绝对误差(MAE)等指标进行评估,展示了如何基于环数预测鲍鱼年龄。文中还详细说明了Keras中Sequential模型的构建、编译与训练过程,并通过可视化方法分析模型性能,最终形成可迭代优化的闭环流程。原创 2025-09-21 12:05:09 · 15 阅读 · 0 评论 -
2、自动化机器学习入门:AWS 上的实践与挑战
本文介绍了自动化机器学习(AutoML)在AWS平台上的实践方法与挑战。通过ACME渔业物流的鲍鱼年龄预测案例,详细阐述了基于CRISP-DM框架的机器学习全流程,包括业务用例定义、数据获取与探索、预处理、模型训练与部署。文章重点展示了如何利用AWS服务如Amazon SageMaker和AutoGluon实现ML流程的自动化,提升效率并降低开发成本,最后展望了自动化机器学习的未来发展趋势。原创 2025-09-20 13:09:03 · 29 阅读 · 0 评论 -
1、利用 AWS 实现自动化机器学习:从入门到实践
本文深入探讨了如何利用AWS服务实现机器学习的自动化操作,涵盖从模型开发、训练、评估到生产部署的完整流程。重点介绍了SageMaker Autopilot和AutoGluon等AutoML工具的使用方法,结合CI/CD最佳实践构建MLOps管道,并通过AWS Step Functions、Apache Airflow等技术优化机器学习工作流。以ACME渔业物流为例展示了实际应用场景,同时阐述了机器学习软件开发生命周期(MLSDLC)中各团队角色的协作模式,帮助读者建立端到端的自动化机器学习体系,提升模型迭代原创 2025-09-19 11:32:49 · 24 阅读 · 0 评论
分享