建立中序线索二叉树并遍历

#include <stdio.h>
#include <stdlib.h>

#define OVERFLOW -2

typedef struct TBTNode
{
    char data;
    int ltag, rtag;                  // 线索标记
    struct TBTNode* lchild, *rchild; // 孩子或线索指针
} TBTNode;


void
Create_TBT(TBTNode* & T)
{
    /* 按先序输入二叉线索树中结点的值,构造二叉线索树T */
    /* "#"表示空结点 */
    char ch;
    scanf("%c", &ch);

    if(ch == '#')
        T = NULL;
    else
    {
        T = (TBTNode*)malloc(sizeof(TBTNode));
        if(!T)
            exit(OVERFLOW);
        T->data = ch;  /* 生成根结点(先序) */
        Create_TBT(T->lchild);/* 递归构造左子树 */
        if(T->lchild) /* 有左孩子 */
            T->ltag = 0;
        Create_TBT(T->rchild); /* 递归构造右子树 */
        if(T->rchild) /* 有右孩子 */
            T->rtag = 0;
    }
}

TBTNode* pre;   // 全局变量,始终指向刚刚访问过的结点
void
Thread(TBTNode*& p) // 中序遍历进行中序线索化
{
    if (p != NULL)
    {
        Thread(p->lchild);  // 左子树线索化
        if (p->lchild == NULL)  // 前驱线索
        {
            p->lchild = pre;    // 建立当前结点的前驱线索
            p->ltag = 1;
        }
        else
            p->ltag = 0;
        if (pre->rchild == NULL)  // 后继线索
        {
            pre->rchild = p;         // 建立前驱结点的后继线索
            pre->rtag = 1;
        }
        else
            pre->rtag = 0;
        pre = p;             // 保持pre指向p的前驱
        Thread(p->rchild);   // 右子树线索化
    }
}

TBTNode*
Create_Thread(TBTNode* & b)
{
    /* 中序遍历二叉树b,并将其中序线索化,root指向头结点 */
    TBTNode* root;
    root = (TBTNode*)malloc(sizeof(TBTNode));  // 创建头结点
    if(!root)
        exit(OVERFLOW);
    root->ltag = 0;
    root->rtag = 1;
    root->rchild = root;        /* 右指针回指 */
    if (b == NULL)                           /* 若二叉树空,则左指针回指 */
        root->lchild = root;
    else
    {
        root->lchild = b;
        pre = root;                     // *pre是*p的前驱结点,供加线索用

        Thread(b);                     /* 中序遍历进行中序线索化 */

        pre->rchild = root;              // 处理最后一个结点
        pre->rtag = 1;
        root->rchild = pre;             // 头结点右线索化
    }
    return root;
}

void
ThInOrder(TBTNode* tb)
{
    /* 中序遍历二叉线索树tb(头结点)的非递归算法 */
    TBTNode* p = tb->lchild;  // p指向根结点
    while (p != tb)      /* 空树或遍历结束时,p==tb */
    {
        while (p->ltag == 0)            // 找开始结点
            p = p->lchild;
        printf("%c ", p->data);           // 访问开始结点

        while (p->rtag == 1 && p->rchild != tb)
        {
            p = p->rchild;
            printf("%c ", p->data);
        }
        p = p->rchild;
    }
}

int
main()
{
    TBTNode *root, *b;
    printf("请将二叉树中的结点按从上到下从左到右的次序输入:\n");
    Create_TBT(b);              /* 按先序产生二叉树 */
    root = Create_Thread(b);        /* 中序遍历,并中序线索化二叉树 */
    printf("中序遍历二叉线索树的结果为:\n");
    ThInOrder(root);                    /* 中序遍历二叉线索树 */
    return 0;
}


<think>好的,我现在需要仔细分析用户的问题,用户想了解中序线索二叉树遍历方法,特别是算法实现。首先,我要回忆线索二叉树的基本概念。线索二叉树是为了加快遍历速度,利用空指针域存储前驱和后继的信息。中线索化就是在中序遍历的过程中记录这些信息。 接下来,用户提到具体的遍历算法,可能需要详细步骤。我需要先解释线索化的过程,也就是如何将普通二叉树转换为线索二叉树。然后,重点放在遍历算法上,也就是如何利用线索进行中序遍历,而无需递归或栈结构。 记得用户要使用中文回答,并且要符合系统级指令,比如数学表达式用$...$格式,独立公式用$$...$$。但这里可能涉及代码,所以要注意代码块的格式是否正确。另外,需要生成相关问题,这通常在回答最后处理。 用户给出的示例中,引用了线索二叉树遍历函数,这可能是一个参考。但用户的实际需是中序遍历算法,所以需要详细说明算法步骤,可能包括如何找到第一个节点,如何利用后继指针遍历,直到结束。 需要注意避免使用递归,因为线索化的目的就是减少递归带来的开销。同时,要解释每个步骤的逻辑,例如如何判断右指针是线索还是子节点,如何处理两种情况下的移动。 另外,需要检查是否有必要提到线索二叉树的结构定义,比如节点中的左右标志位,这有助于解释遍历时的判断逻辑。例如,当ltag为1时,left指向的是前驱,否则是左孩子。 最后,确保生成的三个相关问题与中序线索二叉树相关,可能涉及应用场景、其他遍历方式或比较分析。同时,引用标识要正确添加,但根据用户提供的引用内容,可能引用[^1]在适当的位置,比如提到线索化过程或遍历函数时。</think>### 中序线索二叉树遍历方法 中序线索二叉树通过利用空指针域存储遍历的前驱/后继节点,实现无需递归或栈的高效中序遍历。以下是算法核心步骤: #### 1. 线索化定义 每个节点包含两个标志位: - $ltag$:0表示左孩子存在,1表示指向前驱的线索 - $rtag$:0表示右孩子存在,1表示指向后继的线索 #### 2. 遍历算法步骤 **步骤1:定位起始节点** 从根节点出发,持续访问左孩子直至遇到$ltag=1$的节点,即中列的第一个节点: $$n_{first} = \arg\min_{n \in left\_path} (n.ltag=1)$$ **步骤2线索遍历** ```cpp Thread_BinaryTreeNode* current = first_node; while (current != nullptr) { visit(current); // 访问当前节点 // 通过右线索寻找后继 if (current->rtag == 1) { current = current->right; } else { // 进入右子树的最左节点 current = current->right; while (current != nullptr && current->ltag == 0) { current = current->left; } } } ``` **步骤3:终止条件** 当遍历到最右节点(其$rtag=1$且$right=nullptr$)时终止遍历[^1]。 #### 3. 时间复杂度分析 - 最优情况:$O(n)$,所有节点均有右线索 - 最差情况:$O(n)$,始终保持线性时间复杂度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值