线索二叉树实现中序遍历

前言

如需多次按前中后序遍历二叉树,使用线索二叉树可以加速二叉树的遍历。

一、方法可行性

二叉树的叶子节点存在一个或两个空指针,重复利用空指针可以帮助遍历二叉树。
二叉树节点总数: n2 + n0 + n1, 边总数: 2 * n2 + n1
由节点数=边数 + 1, 得到等式 2 *n2 + n1 + 1 = n2 + n1 + n0,也就是n2 = n0 - 1
二叉树中的空指针数量:2 * n0 + n1 > n2 + n0 + n1
所以空指针足够存储整棵树,也就能用来存储该节点的前驱与后继节点。
以中序遍历为例,草图中的紫边是利用原来的空节点指向节点的前驱,而红边则是指向节点的后继。

二、主要代码实现

1.新的树节点定义

typedef struct Node {
    int data;
    struct Node *lchild, *rchild;
    int ltag, rtag;
} Node;

增加标志ltag,rtag位
ltag = rtag = 0, 表示该节点为正常节点(左右子树都不为空),lchild与rchild指向其左右孩子
ltag = 1, 表示lchild指向的是该节点的前驱pre
rtag = 1, 则表示rchild指向的是该节点的后继
通过rtag与rchild,可以将整个树的中序遍历顺序串联起来

2.为中序遍历增加线索

用正常二叉树的中序遍历,为叶子节点增加线索,pre用来保存中序遍历过程中的前驱结点

void build_thread(Node *root) {
    if (root == NULL) return ;
    static Node *pre = NULL;
    build_thread(root->lchild);
    if (root->lchild == NULL) {
        root->lchild = pre;
        root->ltag = THREAD;
    }
    if (pre != NULL && pre->rchild == NULL) {
        pre->rchild = root;
        pre->rtag = THREAD;
    }
    pre = root;
    build_thread(root->rchild);
}

3.中序遍历输出

用most_left()函数找到当前节点下方,最靠左的叶子节点,就可以沿着上一步建立的线索遍历二叉树

Node *most_left(Node *p) {
    while (p != NULL && p->ltag == NORMAL && p->lchild != NULL) p = p->lchild;
    return p;
}

void output(Node *root) {
    Node *p = most_left(root);
    while (p != NULL) {
        printf("%d ", p->data);
        if (p->rtag == THREAD) {
            p = p->rchild;
        } else {
            p = most_left(p->rchild);
        }
    }
    return ;
}

三、所有代码

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

#define NORMAL 0
#define THREAD 1

typedef struct Node {
    int data;
    struct Node *lchild, *rchild;
    int ltag, rtag;
} Node;

Node *getNewNode(int val) {
    Node *p = (Node *)malloc(sizeof(Node));
    p->data = val;
    p->lchild = p->rchild = NULL;
    p->ltag = p->rtag = NORMAL;
    return p;
}

Node *insert(Node *root, int val) {
    if (root == NULL) return getNewNode(val);
    if (root->data == val) return root;
    if (val < root->data) root->lchild = insert(root->lchild, val);
    else root->rchild = insert(root->rchild, val);
    return root;
}

void build_thread(Node *root) {
    if (root == NULL) return ;
    static Node *pre = NULL;
    build_thread(root->lchild);
    if (root->lchild == NULL) {
        root->lchild = pre;
        root->ltag = THREAD;
    }
    if (pre != NULL && pre->rchild == NULL) {
        pre->rchild = root;
        pre->rtag = THREAD;
    }
    pre = root;
    build_thread(root->rchild);
}

Node *most_left(Node *p) {
    while (p != NULL && p->ltag == NORMAL && p->lchild != NULL) p = p->lchild;
    return p;
}

void output(Node *root) {
    Node *p = most_left(root);
    while (p != NULL) {
        printf("%d ", p->data);
        if (p->rtag == THREAD) {
            p = p->rchild;
        } else {
            p = most_left(p->rchild);
        }
    }
    return ;
}

void in_order(Node *root) {
    if (root == NULL) return ;
    if (root->ltag == NORMAL) in_order(root->lchild);
    printf("%d ",root->data);
    if (root->rtag == NORMAL) in_order(root->rchild);
}

void clear(Node *root) {
    if (root == NULL) return ;
    if (root->ltag == NORMAL) clear(root->lchild);
    if (root->rtag == NORMAL) clear(root->rchild);
    free(root);
}

int main() {
    srand(time(0));
    #define MAX_OP 20
    Node *root = NULL;
    for (int i = 0; i < MAX_OP; i++) {
        int val = rand() % 100;
        root = insert(root, val);
    }
    build_thread(root);
    output(root), printf("\n"); 
    in_order(root); //普通中序遍历对比
    #undef MAX_OP
    clear(root);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值