
Spark/Flink/Doris离线&实时数仓开发
文章平均质量分 89
本人长期从事大数据开发,从0到1做过多个互联网和政府类的数据仓库项目开发。本专栏介绍从0到1搭建数据仓库的过程,分享数据仓库开发过程遇到各种问题和如何优化,小白用户也能快速成为中高级的数仓开发工程师。
Doris来替代hive存储数据,可以解决hive占用存储空间大和ADS层查询慢等痛点。
优惠券已抵扣
余额抵扣
还需支付
¥9.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
大模型大数据攻城狮
在阿里巴巴等多种类型公司工作过,第一份工作是在大厂做移动开发,后来在创业公司由于团队需要做后台开发、嵌入式开发等几乎全栈开发,最近这些年还保持必要全栈开发,精力更多在大数据、大模型等领域。
展开
-
《Spark/Flink/Doris离线&实时数仓开发》目录
欢迎加入《Spark/Flink/Doris离线&实时数仓开发》付费专栏!本专栏专为大数据工程师、数据分析师及准备大数据面试的求职者量身打造,聚焦Spark、Flink、Doris等核心技术,覆盖离线与实时数仓开发的全流程。无论你是想快速上手项目、提升技术能力,还是在面试中脱颖而出,这里都能为你提供。原创 2025-05-24 15:21:55 · 1048 阅读 · 0 评论 -
每天分钟级别时间维度在数据仓库的作用与实现——以Doris和Hive为例(开箱即用)
在现代数据仓库建设中,是不可或缺的基础维表之一。尤其是在金融、电力、物联网、互联网等行业,对于高频数据的统计、分析、报表、数据挖掘等场景具有极其重要的作用。本文将以为例,详细讲解每天分钟级别时间维度表在数据仓库中的,帮助读者全面理解并掌握分钟级别时间维度表的设计与落地。原创 2025-05-23 07:21:09 · 1022 阅读 · 0 评论 -
海豚调度器工作流状态监控 + 报表生成情况邮件报告系统— 一套让你早上睁眼就知道离线数仓有没有崩的神器(即拿即用)
做为打工人,如果离线数仓在晚上跑崩了,没有第一时间知道并介入处理,等到上班时领导或业务要看报表时看不到,这就是一个工作事故。有了这款早上睁眼可以看离线数仓报告神器,如果早上一起床不用打开电脑各种登录,轻松在手机看一下情况,有问题及时处理,没问题轻轻松松去上班。还在每天靠手工登录海豚调度器,看着一堆任务列表苦哈哈地找异常?还在被领导催着汇报“昨天的工作流到底跑没跑完”?还在因为VPN、内网限制,周末也得爬起来开电脑看报表?这些痛苦,我都懂。原创 2025-05-15 00:00:45 · 899 阅读 · 0 评论 -
零售行业中如何通过数据分析优化选品策略
在零售行业,选品策略直接决定了企业的成败。面对琳琅满目的商品选择和瞬息万变的市场需求,零售商常常陷入两难:库存积压导致资金周转困难,或者热销商品断货错失销售机会。这种挑战在竞争日益激烈的市场环境中尤为突出,尤其是在电商与实体店并存的时代,消费者需求的多样性和个性化趋势让选品变得更加复杂。如何精准预测市场需求,优化商品组合,成为摆在每一位零售从业者面前的难题。数据分析的出现,为解决这一困境提供了强有力的工具。原创 2025-05-08 00:01:18 · 374 阅读 · 0 评论 -
大数据实时数仓的数据质量监控解决方案
实时数仓,简而言之,是一种能够以极低延迟处理和分析大规模数据的系统。与传统数据仓库主要处理历史数据、依赖批量ETL(Extract-Transform-Load)流程不同,实时数仓强调数据的即时性,支持从数据生成到分析结果输出的全流程在毫秒到秒级完成。它的核心价值在于为企业提供“实时洞察”,即在数据生成的同时快速转化为可执行的业务价值。以电商平台为例,实时数仓可以根据用户浏览和购买行为,动态调整推荐算法,确保用户在几秒内看到最相关的商品。这种能力直接影响用户体验和转化率。原创 2025-05-05 00:00:44 · 1874 阅读 · 0 评论 -
数仓开发必懂:如何建立精细化运营的指标体系
精细化运营是一种以数据为核心、以流程为骨架、以用户价值为导向的管理理念。它强调对业务的全链条进行深度剖析,将每一个环节的投入与产出进行量化评估,从而实现资源的最优配置和效果的最大化。与之相对的传统运营模式往往依赖经验判断和粗放式管理,而精细化运营则通过系统化的指标、工具和方法,将决策从“拍脑袋”转向“靠数据说话”。从本质上看,精细化运营是一种“拆解与重组”的过程。原创 2025-04-28 00:05:11 · 1278 阅读 · 0 评论 -
大数据面试高阶情景题:如何实现数据脱敏又不影响分析精度
数据脱敏,简而言之,是指通过技术手段对原始数据中的敏感信息进行处理,使其在特定场景下无法直接识别或关联到具体个体或实体,同时尽量保留数据的某些特性以支持后续分析或应用。这一过程可以被视为一种“数据伪装”,其核心目标在于降低数据泄露的风险,保护个人隐私或商业机密。具体而言,数据脱敏可以通过多种方式实现,例如将真实姓名替换为随机生成的字符串、将精确的地理位置模糊化为一个大致范围,或者对数值型数据进行区间划分。这些操作的核心在于隐藏数据的直接可识别性,但不同方法的适用场景和效果差异显著。原创 2025-04-25 00:18:01 · 439 阅读 · 0 评论 -
如何识别金融欺诈行为并进行分析预警
金融欺诈是一个涵盖广泛、复杂多样的概念,它不仅仅是一种违法行为,更是对经济体系和个人信任的严重侵蚀。简单来说,金融欺诈是指通过欺骗、隐瞒或非法手段获取经济利益的行为,通常涉及资金、资产或信息的非法转移。这类行为往往以获取不当利益为目的,手段隐蔽且具有高度破坏性,不仅导致直接经济损失,还可能引发信任危机,动摇市场信心,甚至影响社会稳定。根据国际反欺诈组织(ACFE)的统计,全球每年因欺诈造成的经济损失高达数千亿美元,涉及从个人到企业、从地方到跨国的各个层面。原创 2025-04-24 00:17:44 · 567 阅读 · 0 评论 -
大数据面试高阶问题:同一业务的多个部门有不同指标口径,如何统一
指标定义的差异是口径不统一最直观的表现之一。表面上看,各个部门使用的指标名称可能相同,但背后所指的具体含义却大相径庭。以“用户增长率”这一指标为例,市场部门通常将其定义为“新增注册用户数与上期总用户数的比值”,目的是评估推广活动的效果。然而,运营部门可能更关注活跃用户的变化,将“用户增长率”定义为“本期活跃用户数与上期活跃用户数的比值”,以反映产品粘性和用户参与度。尽管两者的指标名称一致,但由于定义不同,得出的数据结果往往无法直接比较。这种定义上的分歧在日常工作中会带来显著的困扰。原创 2025-04-23 00:02:38 · 1310 阅读 · 0 评论 -
深度解析:在用户画像中,如何高效处理上亿级用户标签
用户画像,简单来说,是基于多维度数据构建的用户虚拟身份模型。它通过整合用户的静态信息、动态行为以及潜在需求,形成一个全面的“用户画像”,从而帮助企业理解用户是谁、需要什么以及可能做什么。这种模型并非单一的数据点,而是多层次、多维度的综合体,能够为业务决策提供深度洞察。用户画像通常由以下几个核心要素构成:基础信息:这是用户画像的静态部分,包括用户的年龄、性别、地理位置、职业等基本属性。这些信息通常来源于用户注册时的填写或第三方数据合作。原创 2025-04-15 00:05:50 · 1009 阅读 · 0 评论 -
如何通过CEP(复杂事件处理)识别异常交易行为? - 深度解析
在现代金融市场中,异常交易行为是一个复杂且多维的概念,其核心在于偏离正常市场行为的操作方式,通常以损害市场公平性、投资者利益或经济稳定为代价。这些行为不仅对市场参与者造成直接的经济损失,还可能引发信任危机,甚至诱发系统性风险。理解异常交易行为的定义、类型及其特征,是构建有效监控和预警机制的第一步。通过深入剖析这些行为的表现形式及其影响,我们可以为后续引入复杂事件处理(CEP)技术提供坚实的理论基础。原创 2025-04-17 00:18:23 · 1105 阅读 · 0 评论 -
物联网使用TDEngine进行Python脚本ETL的企业真实案例
3. 数据质量提升 :通过重采样和前向填充(ffill)技术,处理原始数据中可能存在的缺失值,提高数据的完整性和连续性。3. 结果验证 :可以作为实时计算结果的验证工具,通过比对离线计算和实时计算的结果,发现并修正实时计算中的潜在问题。1. 数据整合与聚合 :将分散在不同点号的功率数据进行整合,计算总功率,提供更全面的系统功率视图。2. 数据补全 :对于实时处理中可能丢失的数据点,通过离线批处理进行补全,确保数据的连续性。1. 高并发写入 :支持高并发的数据写入,适合处理大量设备同时上报的场景。原创 2025-04-17 08:44:42 · 385 阅读 · 0 评论 -
数据仓库分层存储设计:平衡存储成本与查询效率
一句话定义:数据仓库分层存储是根据数据的访问频率、时效性和业务价值,将数据分布在不同性能和成本的存储介质上,以优化查询效率并控制存储开支。想象一个巨大的图书馆:热门新书摆在显眼的前台,借阅频繁;过期的期刊被归档到地下室,偶尔有人翻阅;古老的手稿则锁在保险柜里,几乎无人问津。数据仓库的分层存储就像这个图书馆的管理员,决定哪些数据放在“前台”(高性能存储),哪些归到“地下室”(低成本存储)。核心目标是让常用数据触手可得,同时避免为冷门数据支付高昂的存储费用。为什么需要分层存储?性能驱动。原创 2025-04-14 00:17:37 · 804 阅读 · 0 评论 -
大数据 CDH 排除故障的步骤与技巧
CDH(Cloudera Distribution Hadoop)集群作为大数据处理的核心平台,在日常运维中,难免会遭遇各种 “拦路虎”。这些故障大致可归为几类,了解它们的特点是解决问题的第一步。启动失败:这是令人头疼的问题之一。集群中的某个组件,如 HDFS 的 NameNode 或 YARN 的 ResourceManager 无法启动。原因通常隐藏在配置文件中,可能是参数错误,也可能是资源不足,如内存分配不足或端口被占用。原创 2025-04-09 01:58:38 · 627 阅读 · 0 评论 -
TDengine 从入门到精通(2万字长文)
更令人惊喜的是,它还针对时序数据特别增加了一些实用功能,例如插值、降采样、时间加权平均(TWA)等操作,这些在传统 SQL 中难以直接实现的功能,在 TDengine 中只需通过简单的 SQL 语句就能轻松搞定,无需你再花费大量时间和精力编写一堆复杂的代码来处理,大大提高了工作效率。尤其是在设备众多、数据繁杂的场景中,超级表的优势更加明显,能够实现对数据的高效处理,如同进行一场降维打击,轻松应对复杂的数据管理与分析需求。超级表创建,代表具体的一台设备,它携带了特定的设备 ID 和区域信息。原创 2025-04-07 00:01:22 · 1284 阅读 · 0 评论 -
Flink 自定义数据源:从理论到实践的全方位指南
在 Flink 的世界里,数据源是数据流的 “源头活水”。简单来说,它负责从外部系统(比如数据库、消息队列、文件系统等)读取数据,并将其转化为 Flink 内部能够处理的格式,供后续的算子(Operator)加工。不管是实时流处理的无界数据,还是批处理的有限数据集,数据源都是那个默默干活的 “搬运工”。Flink 的数据源设计非常灵活,它通过一套精心设计的组件架构,确保既能支持内置的开箱即用功能,又能让开发者自由定制。分片(Splits):数据的逻辑切片。原创 2025-03-25 00:01:37 · 1053 阅读 · 0 评论 -
数据分析工作流程全解析:从混沌到洞察的旅程
数据分析,听起来像是技术活,但本质上更像是一门艺术——从一堆杂乱无章的数字、文本和记录中,挖掘出可以指导行动的洞察。它不是简单地盯着表格发呆,而是通过工具、技术和流程,把原始数据变成能解决实际问题的“金子”。让数据说话,帮人做决策。分类的魔法:通过研究已有的分类数据,摸索出规律,然后用这些规律去预测未知。比如,电商平台根据用户的历史购买记录,判断哪些人可能是“剁手党”。关联与推荐:在大规模数据里找出事物之间的联系,比如“买了面包的人通常也会买牛奶”,这背后是关联规则的功劳,也是推荐系统的核心逻辑。原创 2025-03-21 08:52:30 · 554 阅读 · 0 评论 -
大数据 ETL 异常值缺失值处理完整方案
异常值,通常指在统计分布上远离大部分数据点的个体,这些数据可能由于录入错误、设备故障、传输异常或真实的极端事件所引发。了解异常值的本质和成因,有助于我们选择恰当的处理策略。原创 2025-03-19 11:57:20 · 1450 阅读 · 0 评论 -
Spark DataFrame、Dataset 和 SQL 解析原理深入解析(万字长文多张原理图)
Spark 是一个分布式计算框架,其架构设计旨在实现高效的并行处理和容错能力。核心计算引擎(Core Engine):核心计算引擎负责任务调度、内存管理以及容错机制。它通过 Driver 和 Executor 的协作完成分布式计算,其中 Driver 负责作业的协调和调度,Executor 负责具体任务的执行。相关源码可以参考类,它是 Spark 核心计算引擎的入口类。// 简化示意,创建 SparkContext 实例弹性分布式数据集(RDD)原创 2025-03-17 11:06:52 · 754 阅读 · 0 评论 -
深度剖析 Doris 数据倾斜,优化方案一网打尽
简单来说,数据倾斜指的是数据在分区或分桶时分布不均匀的现象。想象一下,你把一堆苹果分给几个篮子,结果有的篮子装得满满当当,有的却几乎是空的 —— 这就是数据倾斜在 Doris 中的写照。在分布式系统中,这种不均匀分布会直接影响到数据的存储、查询和计算效率。分区层面:数据按时间、地域等维度切分时,某些分区可能承载了绝大部分数据。分桶层面:数据按哈希值分配到不同桶中时,某些桶可能因为键值分布不均而 “超载”。原创 2025-03-14 00:02:08 · 1078 阅读 · 0 评论 -
Hbase高阶知识:HBase的协处理器(Coprocessor)原理、使用实例、高级技巧和案例分析
HBase,作为一个开源的、分布式的、可扩展的以及基于列的NoSQL数据库,已被广泛应用于存储大规模数据集。其架构设计和数据模型是理解HBase工作原理和性能特点的基础。HBase的架构由多个关键组件构成,包括Client、Zookeeper、Master和RegionServer等。其中,Client负责与用户进行交互,接收用户的请求并返回结果;Zookeeper则负责协调和管理HBase集群中的各个组件,确保系统的高可用性;原创 2024-09-28 00:00:47 · 1051 阅读 · 0 评论 -
指标异动拆解:数据分析师的实战指南
在数据分析的世界里,指标异动指的是业务指标出现长期、持续性且偏离常规走势的变化。这不仅仅是数字上的起伏,更像是业务发出的“信号”,提醒我们某些地方可能出了问题,或者隐藏着未被发现的机会。比如,电商平台的销售额突然暴跌,或者某个APP的日活用户数意外飙升,这些都可能是指标异动的表现。但要注意,异动和普通波动可不是一回事。真正的异动往往需要我们跳出数据的表面,去探究背后的业务含义。这就要求分析师不仅要对数字敏感,更得对业务有深刻的理解。只有这样,才能在茫茫数据海中抓住那些值得深挖的“异常信号”。原创 2025-02-27 00:13:28 · 975 阅读 · 0 评论 -
一文搞定 Linux 定时任务及脚本编写,运维大神都在用
函数是 Shell 脚本实现模块化的关键,它就像是脚本中的一个个 “功能小模块”,能够将一些常用的代码片段封装起来,提高代码的复用性和可维护性。函数的定义方式有两种,可以通过。原创 2025-02-22 10:39:08 · 459 阅读 · 0 评论 -
大数据选型对比追命连环50问及参考答案
Spark 比 MapReduce 运行快有多方面原因。首先,从数据处理模型来看,MapReduce 采用的是较为传统的两阶段模型,即 Map 阶段和 Reduce 阶段,数据在这两个阶段之间需要进行磁盘读写操作。例如,在一个简单的单词计数任务中,Map 阶段输出的中间结果需要写入磁盘,Reduce 阶段再从磁盘读取这些中间结果进行处理。而 Spark 基于内存计算模型,在可能的情况下,数据会被缓存在内存中,减少了磁盘 I/O 开销。原创 2024-10-28 00:10:31 · 554 阅读 · 0 评论 -
Flink Checkpoint 终极揭秘:不搞懂它,你的流计算就是裸奔!
在流式处理系统中,数据是连续不断地流动的。为了保证数据处理的容错性和一致性,Flink 引入了 Checkpoint 机制。Checkpoint 本质上是应用状态在某个时间点的全局快照。关键概念:在 Flink 流式应用中,算子(operators)为了进行有状态的计算(例如窗口聚合、连接操作等)需要维护自身的状态信息。状态包括算子的内部数据结构,例如哈希表、缓冲区、窗口的中间结果等等。Checkpoint 记录的是整个 Flink 应用在某一时刻所有算子状态的一致性视图。原创 2025-02-20 00:39:11 · 489 阅读 · 0 评论 -
Flink SQL与Doris实时数仓Join实战教程(理论+实例保姆级教程)
在实时数仓中,由于数据不断流动,如果状态数据长时间保留,会占用大量内存。例如,通过设置水位线来标记流中数据的时间进展,确保在进行连接操作时,只处理已经到达的最新数据,避免因数据乱序导致的错误连接。💡想象一下,我们有两个数据流,就像两条流淌的数据河流,Regular Joins 要做的就是在这两条河流中找到相互匹配的数据元素,并将它们组合在一起。在实时流数据中,每个数据元素都带有时间属性,而 Interval Joins 就是利用这些时间属性,在不同流的数据之间找到时间上有交集的记录,并将它们连接起来。原创 2025-02-18 07:25:15 · 1219 阅读 · 0 评论 -
数智融合:如何利用大模型解决离线数仓历史项目烟囱式开发的完整解决方案
许多企业的离线数仓存在烟囱式开发的问题,各个业务部门独立开发自己的数据处理流程和 SQL 代码,缺乏统一的规划和标准。这导致不同业务线的 SQL 文件分散在不同的地方,难以进行统一的管理和维护。有时项目为了赶进度,没时间考虑全局优化,匆忙写SQL上线,也会存在烟囱式问题。烟囱式开发会造成计算资源浪费,造成指标不一致,并为以后开发指标埋下隐患。如果人工的分析这些问题,如果项目复杂或之前没接手过的,会耗费不少时间,可以借助大模型来辅助整个优化过程,达到事半功倍的效果。原创 2025-02-12 00:09:26 · 657 阅读 · 0 评论 -
如何对比某个表在Hive和Doris磁盘空间大小和Doris表如何优化存储空间保姆级教程(亲试可用)
在列式存储中,表的每一列会独立存储,这为压缩技术的应用提供了便利,从而提高了存储效率。数据的顺序越有规律,压缩算法在压缩时可以识别出更多的重复模式,从而提升压缩比。在 Hive 中查看某个表占用的磁盘空间,通常依赖于底层的存储系统(如 HDFS)来查询表的实际存储情况。:通过合并小文件,减少存储碎片,提高存储效率。列中空值的比例较高时,压缩算法可能会更有效,因为压缩算法会将这些空值作为一种特殊的模式进行编码,减少存储空间。通常我们关注的并不是表定义中的字段长度,而是实际数据中的最大值或者存储中的数据特征。原创 2025-02-11 00:06:28 · 755 阅读 · 0 评论 -
Flink 背压与消息积压难题大揭秘!速看解决攻略
使用自定义 Partitioner,更均匀地分配数据。例如,使用。原创 2025-02-10 00:09:50 · 873 阅读 · 0 评论 -
Flink 调用海豚调度器 SQL 脚本实现1份SQL流批一体化的方案和可运行的代码实例
在大数据处理领域,传统的数据处理方式通常将批处理和流处理分开进行。批处理主要用于处理历史数据,通常以固定时间间隔(如每天、每周)进行数据处理和分析;而流处理则专注于实时数据的处理,对数据进行实时的响应和分析。这种分离的处理方式导致了开发和维护的复杂性增加,需要为批处理和流处理分别编写代码,并且在代码逻辑发生变化时,需要在两个不同的代码库中进行修改,容易出现不一致的情况。流批一体化的概念应运而生,它旨在通过统一的编程模型和执行引擎,实现批处理和流处理的统一。原创 2025-02-08 11:52:12 · 981 阅读 · 0 评论 -
一文吃透!DataStage 全面概述与核心知识要点大公开
DataStage 是 IBM 公司精心打造的数据集成工具,在 IBM WebSphere Data Integration Suite 里占据着举足轻重的地位。它主要应用于 ETL(Extract, Transform, Load)流程,也就是数据的抽取、转换与加载。想象一下,企业的数据就像一座庞大的宝藏库,里面有各种各样的宝贝(数据),但这些宝贝可能分散在不同的地方,而且有的还需要打磨(转换)才能真正发挥价值。原创 2025-02-08 00:09:07 · 622 阅读 · 0 评论 -
Doris更新某一列数据完整教程
在Doris,要更新数据,并不像mysql等关系型数据库那样方便,可以用update set来直接更新某个列。原创 2025-02-07 21:16:32 · 387 阅读 · 0 评论 -
Flink把kakfa数据写入Doris的N种方法及对比。
用Flink+Doris来开发实时数仓,首要解决是如何接入kafka实时流,下面是参考Doris官方文档和代码,在自己项目开发的实践中总结,包括一些容易踩坑的细节。原创 2025-01-22 00:05:57 · 1325 阅读 · 0 评论 -
采用海豚调度器+Doris开发数仓保姆级教程(满满是踩坑干货细节,持续更新)
如果需要设置动态分区永不过期,要如下面这样设置: 'dynamic_partition.start' = '-2147483648',如果生命周期不要那么长,只需要30天,可以设置: 'dynamic_partition.start' = '30'。可以用navicat等工具,像连接mysql一样(不同的是端口默认是9030),先直接在doris进行开发调试,查询速度扛扛的,开发效率提升好多。的方式时来覆盖每天的分区。如果要接入的数据是主键不重复的,可以设置为Unique模型,这样可以删除或修改。原创 2025-01-17 00:06:30 · 1294 阅读 · 0 评论 -
Flink集成TDEngine来批处理或流式读取数据进行流批一体化计算(Flink SQL)拿来即用的案例
/ 使用 transient 避免序列化// JDBC连接参数在open()方法中初始化@Override// 在这里初始化数据库连接// 准备SQL查询语句@Override// 从ResultSet中提取数据并转换为RunData对象// 将数据发送到Flink的处理流中if (data!= null) {@Override// 关闭资源try {// 处理关闭资源时的异常// 提取单行数据。原创 2025-01-10 16:10:22 · 1070 阅读 · 0 评论 -
企业实战干货分享:Flink的实时数仓误差原因详解,如何利用离线计算修正结果保姆级教程
当节点重启后,从持久化存储恢复状态时,可能因状态快照不完整、恢复过程出错等,致使后续计算基于错误的初始状态,像实时统计用户连续登录天数,若状态恢复有误,就会给出错误的连续登录天数统计,误导业务分析。例如,在实时数据流中,如果某些数据源的传输延迟较高,或者数据被缓冲后才批量发送,Flink可能无法实时获得完整的最新数据,导致计算结果不准确。在实时计算过程中,当系统发现某些实时计算结果存在偏差时,可以通过增量修正的方式,即基于离线计算的最新数据,对误差较大的结果进行回填修正。原创 2024-12-26 00:01:30 · 1364 阅读 · 0 评论 -
万字长文详解Hive聚合函数 grouping sets、cube、rollup原理、语法、案例和优化
这种灵活性使得GROUPING SETS在处理特定维度组合时更为高效。在性能方面,由于CUBE需要计算所有可能的维度组合,因此在处理大型数据集时可能会面临更高的计算开销。GROUPING SETS通过只计算指定的维度组合,通常能够提供更好的查询响应速度。另一个值得注意的区别是NULL值的处理。CUBE会。原创 2024-11-03 00:13:40 · 813 阅读 · 0 评论 -
离线数仓开发SQL编写和调试的最佳实践(如何又快又好完成任务,学会几条就不用当很辛苦的牛马)
MPP架构:Impala采用Massively Parallel Processing(MPP)架构,能够在多个节点上并行处理查询,大大提高了查询速度。内存计算:Impala将数据和计算都放在内存中,避免了Hive中频繁的磁盘I/O操作,显著提升了查询性能。实时性:Impala支持实时查询,适合需要快速响应的场景。列式存储:Doris采用列式存储,能够高效地处理分析型查询,减少不必要的I/O操作。向量化执行:Doris支持向量化执行,能够批量处理数据,提高查询性能。实时更新。原创 2024-11-02 09:39:47 · 633 阅读 · 0 评论 -
面试拷打要懂:Hive sql优化最全总结
在大数据时代,HiveSQL优化成为提升数据分析效率的关键因素。通过合理的优化策略,如等,不仅能显著改善查询性能,还能有效降低计算成本。这些优化措施不仅提高了系统的响应速度和吞吐量,还为大规模数据处理提供了更可靠的保障。特别是在面对复杂查询和海量数据时,优化后的HiveSQL能够更好地应对挑战,为企业决策提供及时、准确的支持。在HiveSQL优化中,减少数据量是一个至关重要的核心思想。通过巧妙运用各种技术手段,我们可以显著提升查询性能,同时降低计算成本。原创 2024-11-01 12:33:28 · 606 阅读 · 0 评论 -
Spark面试必问:Spark sql优化最全总结(持续更新)
Spark SQL是Apache Spark生态系统中的核心模块,专门用于处理。作为Spark的重要组成部分,它不仅提供了强大的SQL查询功能,还实现了与Spark其他模块的无缝集成。Spark SQL的一个关键特点是其,能够轻松地从各种数据源(如Hive、RDD、Parquet文件等)获取数据,并支持多种性能优化技术,如内存列存储和字节码生成。此外,Spark SQL引入了DataFrame和DataSet这两个高级抽象,极大地简化了开发过程,提高了开发效率。原创 2024-11-01 12:39:36 · 624 阅读 · 0 评论