描述
将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 ,k>=1 。
正整数n 的这种表示称为正整数n 的划分。
输入
标准的输入包含若干组测试数据。每组测试数据是一行输入数据,包括两个整数N 和 K。
(0 < N <= 50, 0 < K <= N)
输出
对于每组测试数据,输出以下三行数据:
第一行: N划分成K个正整数之和的划分数目
第二行: N划分成若干个不同正整数之和的划分数目
第三行: N划分成若干个奇正整数之和的划分数目
样例输入
5 2
样例输出
2
3
3
提示
第一行: 4+1, 3+2,
第二行: 5,4+1,3+2
第三行: 5,1+1+3, 1+1+1+1+1+1
题解:
这题有三个任务,我们分别来看。
task1:N划分成K个正整数之和的划分数目
用
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]表示将数字i划分成j个正整数之和的划分数目
再考虑转移
第一种
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] +=
d
p
[
i
−
1
]
[
j
−
1
]
dp[i - 1][j - 1]
dp[i−1][j−1], 相当于在原来的后面增加一个“1”
此时,被划分的数值加1,划分成的正整数个数也加1
第二种
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] +=
d
p
[
i
−
j
]
[
j
[
dp[i - j][j[
dp[i−j][j[,相当于将原来的j个数全部加上1
这样的操作可以满足前面的数必定大于等于后面的数
边界
d
p
[
0
]
[
0
]
dp[0][0]
dp[0][0] = 1
task2:N划分成若干个不同正整数之和的划分数目
这是一个01背包问题
相当于有一个容积为N的背包,用N个物品体积为(1 ~ N),每个物品只能放一次(要求不同正整数)求刚好装满的方案数。
按照01背包
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]表示前i个物品,达到总体积为j的方案数
考虑状态转移
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] +=
d
p
[
i
−
1
]
[
j
]
dp[i - 1][j]
dp[i−1][j] 不选第i个物品
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] +=
d
p
[
i
−
1
]
[
j
−
w
[
i
]
]
dp[i - 1][j - w[i]]
dp[i−1][j−w[i]] 选第i个物品(其中
w
[
i
]
w[i]
w[i] = i)
w
[
i
]
w[i]
w[i]表示第i个物品的体积
边界
d
p
[
0
]
[
0
]
dp[0][0]
dp[0][0] = 1;
task3:N划分成若干个奇正整数之和的划分数目
这与第一个任务类似
用
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]表示将数字i划分成j个奇正整数之和的划分数目
再考虑转移
第一种
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] +=
d
p
[
i
−
1
]
[
j
−
1
]
dp[i - 1][j - 1]
dp[i−1][j−1], 相当于在原来的后面增加一个“1”
第二种
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] +=
d
p
[
i
−
2
∗
j
]
[
j
[
dp[i - 2 * j][j[
dp[i−2∗j][j[,相当于将原来的j个数全部加上2,保证所有j个正整数都是奇数11
这样的操作可以满足前面的数必定大于等于后面的数
边界
d
p
[
0
]
[
0
]
dp[0][0]
dp[0][0] = 1
最终将所有的
d
p
[
n
]
[
m
]
dp[n][m]
dp[n][m]( 1 <= m <= n)相加,就是答案
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int dp[100][100];
int task1(int n, int k){
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
int i, j;
for(i = 1; i <= n; i++)
for(j = 1; j <= k; j++){
dp[i][j] = dp[i - 1][j - 1];
if(i >= j) dp[i][j] += dp[i - j][j]; }
return dp[n][k];
}
int task2(int n){
int i, j;
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for(i = 1; i <= n; i++){
for(j = 0; j <= n; j++){
dp[i][j] += dp[i - 1][j];
if(j >= i) dp[i][j] += dp[i - 1][j - i];
}
}
return dp[n][n];
}
int task3(int n){
int i, j;
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for(i = 1; i <= n; i++){
for(j = 1; j <= n; j++){
dp[i][j] += dp[i - 1][j - 1];
if(i >= 2 * j) dp[i][j] += dp[i - 2 * j][j];
}
}
int ans = 0;
for(i = 1; i <= n; i++)
ans += dp[n][i];
return ans;
}
int main(){
int n, k;
while(scanf("%d%d", &n, &k) == 2){
printf("%d\n", task1(n, k));
printf("%d\n", task2(n));
printf("%d\n", task3(n));
}
return 0;
}