序篇
对于机器学习、深度学习的相关理论之前都是雾里看花,知其然不知其所以然,还停留在一般概念的层次,甚至连概念都不清晰。一是因为这些知识都是建立在一定的数学基础之上,时间久远了,很多数学基础知识都忘光了;二是需要比较完整的大片时间来深入学习,对于时间碎片化严重的我要找出很完整的一段时间来学习比较困难。
去年11月中旬偶感小恙,由于过于轻视导致肺炎。在治疗养病期间,有了大量整片的学习时间,于是在某东买了几本深度学习入门级的书来看,把之前一些很模糊的概念理清楚了,并对深度学习有了全新的认识。这几本书都是深入浅出类型的书,非常适合初学者入门。另外B站上台湾大学李宏毅教授关于机器学习的课程,生动有趣,学习后获益匪浅。最后,我在人工智能方面的启蒙来自于我的同事杨宪洪老师和吴鹏飞博士,本系列笔记有部分内容也出自他们的原创,在此致以谢意!
为了不让自己遗忘学习的内容并再次巩固,趁这个难忘的春节把我学习过程中的心得记录下来,也分享给正在学习机器学习和深度学习的同道。如有任何不对之处,欢迎大家斧正!篇章按以下顺序进行:
- 序篇
- AI / ML / DL的基本概念
- 神经元的工作原理
- 感知机——神经网络的雏形
- 神经网络的学习(训练)
- 激活函数
- 损失函数
- 梯度下降法
- 误差反向传播法
- 与学习(训练)相关的技巧
- 卷积神经网络
- 深度学习的其他类型
——2020年1月24日 除夕
References:
- 斋藤康毅 著,陆宇杰 译,中国工信出版集团和人民邮电出版社 出版
- 涌井良幸、涌井贞美 著,杨瑞龙 译,中国工信出版集团和人民邮电出版社 出版
- 周志华 著,清华大学出版社 出版