神经网络
文章平均质量分 83
小凌Candy
小白一只icat.cc
展开
-
神经网络——Python实现Boltzmann机算法及实际应用(理论+例子+程序)
一个简单的Boltzmann 机算法解决TSP问题原创 2024-06-23 12:28:21 · 1243 阅读 · 0 评论 -
神经网络——Python实现Hopfield神经网络算法(理论+例子+程序)
Hopfield网络提供了模拟人类记忆的模型。使用下述公式更新霍普菲尔德中节点的值:公式中:wji是节点j到节点i的权重。si 节点i的值(状态s)。原创 2023-04-01 18:13:52 · 3091 阅读 · 0 评论 -
神经网络——Python实现RBF 网络模型的实际应用
来源:小凌のBlog—Good Times|一个不咋地的博客一、正则化RBF用RBF网络解决插值问题时,基于上述正则化理论的 RBF网络称为正则化网络。其特点是隐节点数等于输人样本数,隐节点的激活函数为Green函数,常具有式a(r)=exp(-r的平方/2*σ的平方)的Gauss形式,并将所有输入样本设为径向基函数的中心,各径向基函数取统一的扩展常数。由于正则化网络的训练样本与“基函数”是一一对应的。当样本数 P 很大时,实现网络的计算量将大得惊人,此外 P 很大则权值矩阵也很大,求解网络..原创 2022-05-12 11:42:04 · 7296 阅读 · 5 评论 -
神经网络——Python实现BP神经网络算法(理论+例子+程序)
一、基于BP算法的多层感知器模型采用BP算法的多层感知器是至今为止应用最广泛的神经网络,在多层感知器的应用中,以图3-15所示的单隐层网络的应用最为普遍。一般习惯将单隐层前馈网称为三层感知器,所谓三层包括了输入层、隐层和输出层。算法最终结果采用梯度下降法,具体详细过程此处就省略了!二、BP算法的程序实现流程三、标准BP算法的改进——增加动量项标准BP算法在调整权值时,只按t时刻误差的梯度降方向调整,而没有考虑t时刻以前的梯度方向,从而常使训练过程发生振荡,收敛缓慢。为了提原创 2021-11-27 10:18:49 · 84515 阅读 · 44 评论