使用Python实现Map Reduce程序

本文介绍如何使用Python实现Hadoop的WordCount程序。通过Hadoop Streaming工具,利用Python脚本作为Mapper和Reducer,实现了基本的MapReduce流程。文章提供了具体的Python代码示例,并指导如何配置和运行。
摘要由CSDN通过智能技术生成

Hadoop 框架是使用Java编写的但是我们仍然需要使用像C++、Python等语言来实现 Hadoop程序。在Hadoop官网https://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html上有java版本的示例,但是其他语言的没有。前几天我需要用hadoop做一些统计,但是很久没有写过java了,一时半会儿觉得太麻烦。所以决定用python写。这里以word count为例进行说明。

在进行数据处理的过程中我使用的工具是hadoop streaming。Hadoop streaming是Hadoop的一个工具, 它帮助用户创建和运行一类特殊的map/reduce作业, 这些特殊的map/reduce作业是由一些可执行文件或脚本文件充当mapper或者reducer。例如:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper /bin/cat \
    -reducer /bin/wc
python的mapper代码:

#!/usr/bin/env python  
  
import sys  

for line in sys.stdin:   
    line = line.strip()
    words = line.split() 
    for word in words:
        print '%s\t%s' % (word, 1)  
python的reducer代码:

#!/usr/bin/env python  
  
from operator import itemgetter  
import sys  
  
current_word = None  
current_count = 0  
word = None  

for line in sys.stdin: 
    line = line.strip()  
    word, count = line.split('\t', 1)  
    try:  
        count = int(count)  
    except ValueError:   
        continue 
    if current_word == word:  
        current_count += count  
    else:  
        if current_word:   
            print '%s\t%s' % (current_word, current_count)  
        current_count = count  
        current_word = word   
if current_word == word:  
    print '%s\t%s' % (current_word, current_count) 

这里我们需要给mapper和reducer添加可执行权限。一般755就可以了。

然后对代码进行测试,其实在hadoop运行的过程如果代码有错误会报错的,不过万一是代码逻辑有问题,计算的结果有问题这个就需要自己检查了。所以测试是非常重要的:

cat 1.txt| ./mappers.py |sort| ./reducers.py
测试没有问题之后,就可以进行运算了:

$hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar   
-mapper /usr/local/hadoop/mapper.py   
-reducer /usr/local/hadoop/reducer.py   
-input test/*   
-output output  
hadoop streaming 的jar包可能会随着安装的位置不同,这个是需要注意的。

如果上面运行出错,请参考下面一段代码。注意,重新运行,需要删除dfs中的output文件

hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar    
-mapper task1/mapper.py    
-file task1/mapper.py    
-reducer task1/reducer.py    
-file task1/reducer.py    
-input url   
-output url-output    
-jobconf mapred.reduce.tasks=3  
如果运行过程中task报错,可以查看log,命令为:

yarn logs -applicationId ${applicationId}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值