训练模型的时候我们一般会在本地调试然后在使用大规模数据集运行,因此在本地搭建tensorflow环境比较重要,但是因为tensorflow只支持python3.5以上的,但是目前python2.7和python3.5+又不是非常兼容,因此如果直接装的话,会导致本地的环境非常混乱,因此大部分都推荐virtualenv安装。正常情况下安装是比较方便的,下面出个非常简单粗暴的教程:
相关条件:
- python3.5以上
- pycharm
- pip
安装过程如下:
- 安装virtualenv,并创建虚拟环境
首先cmd打开命令行输入:
pip install virtualenv
安装成功之后开始创建虚拟环境,为了避免和Python27的环境弄混,我们要弄一个干净的环境因此选择–no-site-packages
virtualenv --no-site-package --python "python3 path" virtualenv_path
创建虚拟环境需要一段时间,得等一会儿。虚拟环境创建好之后需要激活
到虚拟环境目录下
.\Scripts\activate
激活成功则可以安装tensorflow
- 在虚拟环境安装tensorflow
pip install tensorflow
以上tensorflow安装完毕,剩下可以配置pycharm
3. 配置pycharm
打开pycharm新建一个project,选择settings-project-Interpreter
点击右上角的Add-Existing enviroment选择虚拟环境的python环境就好啦